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Task 1 (20%): Autonomous systems

Assume given measured outputs

yk ∀ k = 0, . . . , N − 1 (1)

from an autonomous system described by the model

xk+1 = Axk, (x0 6= 0 The initial state) (2)

yk = Dxk, (3)

where xk ∈ Rn is the state vector and x0 is the initial state vector at the initial
time instant k = 0.
The problem in this task is to identify the system order n, the model matrices
A and D as well as the initial state vector x0 !

a) Matrix equations:

• Write up one matrix equation involving the Hankel matrix Y0|L, the
extended Observability matrix OL and a matrix X0 with states.

• Write up one matrix equation involving the Hankel matrix Y1|L, the
extended Observability matrix OL, a matrix X0 with states and the
system matrix A.

• Define the structure of the matrices Y0|L, Y1|L and X0.

• What is the importance of the matrix A in eq. (2) ? Explain some
properties !

b) Describe how n, OL and X0 may be estimated from a Singular Value
Decomposition (SVD) of the Hankel matrix Y0|L.

c) Find a formula for estimating/calculating the system matrix A ?

d) How can we find estimates of the output matrix D and the initial state
vector x0 ?
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Task 2 (25%): Least Squares methods

a) Consider a general ARX model

A(q)yk = B(q)uk + ek, (4)

where ek is white noise with covariance matrix ∆ = E(eke
T
k ). ek is

assumed uncorrelated with uk. A(q) and B(q) are polynomials in the
shift operator q−1 such that e.g. q−1yk = yk−1 and given by

A(q) = 1 + a1q
−1 + a2q

−2 + · · ·+ anaq
−na , (5)

B(q) = b0 + b1q
−1 + b2q

−2 + · · ·+ bnb
q−nb , (6)

and where na and nb are the order of the polynomials.

• Write the ARX model as a linear regression model of the form

yk = ϕT
k θ0 + ek (7)

In particular, define the regression vector, ϕk, and the parameter
vector, θ0.

• Based on the regression model in Eq. (7) above, find a predictor,
ȳk(θ), for the measurement yk.

• Define the prediction error, εk.

b) Consider the following prediction error criterion

VN(θ) =
1

N

N∑
k=1

εTk Λεk (8)

where Λ is a specified and symmetric weighting matrix.

• Find the Ordinary Least Squares (OLS) estimate, θ̂N , of the true
parameter vector θ0.

• Does there exist an optimal weighting matrix Λ ? If so, what is the
name of the corresponding estimate and the optimal Λ?

c) Assume given t observations of a variable yk, say

yk ∀ k = 1, . . . , t (9)

The mean after t observations is given by

ȳt =
1

t

t∑
k=1

yk. (10)

Find a recursive formula for calculating the mean ?
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d) Assume that the observations yk as given in (12) above can be expressed
as

yk = θ + ek, (11)

where θ is a constant parameter and ek is a white noise disturbance.

Find a recursive algorithm/formula for calculating an estimate θ̂ of θ ?

e) Based on the OLS solution in Task 2b) above, show how we can develop a
recursive Ordinary Least Squares (ROLS) method of the following form

θ̂t = θ̂t−1 +Kt(yt − ϕT
t θ̂t−1). (12)

You shall in particular find equations for computing the gain, Kt, in
Equation (12).

Task 3 (10%): The Kalman filter

a) Given a system modeled by a discrete time, state space model as follows

xk+1 = Axk +Buk + vk, (13)

yk = Dxk + Euk + wk, (14)

where vk is white process noise and wk is white measurements noise.
Assume that the noise are uncorrelated, i.e. E(vkw

T
k ) = 0.

• Write down a Kalman filter on apriori-aposteriori form for optimal
estimation of the state vector xk.

• Find a formula for the Kalman filter gain matrix, K, in the Kalman
filter on apriori-aposteriori form.

• Show how the apriori-aposteriori formulation of the Kalman filter
can be written as a Kalman filter on innovations form.

• Write down the Kalman-filter on prediction form for the system in
Eqs. (13) and (14) ? Remark: The Kalman filter on prediction
form is often used to calculate a prediction ȳk of the output yk and
used in prediction error methods for system identification.

b) Given a non-linear system

xk+1 = f(xk, uk) + vk, (15)

yk = g(xk) + wk, (16)

where vk and wk are discrete white process noise and discrete white
measurements noise, respectively.

Formulate the Kalman filter on apriori-aposteriori form for the non-linear
system model in Eqs. (15) and (16).

3



Task 4 (15%): Deterministic Subspace
System Identification

Consider the discrete time deterministic model, ie.

xk+1 = Axk +Buk, (17)

yk = Dxk + Euk, (18)

where the following output and input data matrices are known

Y =


yT0
yT1
...
yTN−1

 ∈ RN×m, U =


uT0
uT1
...
uTN−1

 ∈ RN×r. (19)

a) Based on the model in Equations (17) and (18) and with known data as
given in (19) we can develop the following matrix equations

Y0|L = OLX0 +Hd
LU0|L+g−1, (20)

Y1|L = ÃLY0|L + B̃LU0|L+g, (21)

where L ≥ 1 is a user specified positive integer.

• Write down the structure of the matrices in the matrix equations,
(20) and (21), with parameters N = 10, L = 2, J = 2 and g = 0.

• Write up the expressions for the matrices ÃL and B̃L !

b) By using (19) and Equations (20) and (21) we may formulate the equa-
tions

Z0|L = OLX
a
0 (22)

and

Z1|L = ÃLZ0|L (23)

Find expressions for the data matrices Z0|L and Z1|L.

Remark: define the projections which is involved in the expressions for
Z1|L and Z0|L.

c) Show how

• the system matrix A

can be estimated.
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d) Assume that the system is single output. Is it then possible to write the
deterministic system as a linear regression model? , i.e., as a model

yk = ϕT
k θ (24)

where ϕk contains the regressors and θ is a vector of parameters. The
answer is YES? or NO?

Task 5 (10%): Subspace System Identi-
fication: Combined Systems with feed-
back in the data

Consider the discrete time model on innovations form, ie.

xk+1 = Axk +Buk + Cek, (25)

yk = Dxk + Fek (26)

where ek is white noise with unit covariance matrix, i.e., E(eke
T
k ) = I and

where the following output and input data matrices are known

Y =


yT0
yT1
...
yTN−1

 ∈ RN×m, U =


uT0
uT1
...
uTN−1

 ∈ RN×r. (27)

Consider that the known input and output data as given in (27) are collected
in closed loop, i.e., we assume that there is feedback in the known data.

a)

From Eq. (26) we may define the matrix Equation

YJ |1 = DXJ |1 + FEJ |1 (28)

• Define the Hankel matrices YJ |1, XJ |1 and EJ |1.

• When J →∞ we can prove that the following identities holds

XJ |1 = XJ |1/

[
U0|J
Y0|J

]
(29)

and

EJ |1/

[
U0|J
Y0|J

]
= 0. (30)
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Use (29), (30) and (28) to find a projection

Zs
J |1 = FEJ |1 (31)

such that the innovations sequence

Zs
J |1 =

[
FeJ FeJ+1 . . . FeN−1

]
=

[
εJ εJ+1 . . . εN−1

]
(32)

is estimated and hence could be considered as known.

• Explain how this projection can be used in order to develop a sub-
space identification algorithm for closed loop systems.

b) Given two matrices A and B. Define the mathematical expression for
the orthogonal projection of A onto B, i.e. define

A/B = ? (33)
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