

EXAMINATION INFORMATION PAGEWritten examination

Subject code:	Subject name:	
IIA2217	System Identification and Optimal Estimation	
Examination date:	Examination time from 9-	Total hours:
June 7, 2018	14	5
Responsible subject teacher:		
David Di Ruscio. Phone 40751996		
Campus:	Faculty:	
Porsgrunn	Faculty of Technology, Natural Sciences and Maritime Sciences	
No of assignments.	No. of attachments:	No of pages in all front years
No. of assignments: 5		No. of pages incl. front page
	0	and attachments: 6
Permitted aids:		
Pen and paper		
ren and paper		
Information regarding attachments:		
Comments:		
Select the type of examination paper		

Line sheets

Spreadsheets

Task 1 (20%): Autonomous systems

Assume given measured outputs

$$y_k \ \forall \ k = 0, \dots, N - 1 \tag{1}$$

from an autonomous system described by the model

$$x_{k+1} = Ax_k, (x_0 \neq 0 \text{ The initial state})$$
 (2)

$$y_k = Dx_k, (3)$$

where $x_k \in \mathbb{R}^n$ is the state vector and x_0 is the initial state vector at the initial time instant k = 0.

The **problem** in this task is to identify the system order n, the model matrices A and D as well as the initial state vector x_0 !

- a) Matrix equations:
 - Write down one matrix equation involving the Hankel matrix $Y_{0|L}$, the extended Observability matrix O_L and a matrix X_0 with states.
 - Write down one matrix equation involving the Hankel matrix $Y_{1|L}$, the extended Observability matrix O_L , a matrix X_0 with states and the system matrix A.
 - Define the structure of the matrices $Y_{0|L}$, $Y_{1|L}$ and X_0 .
- b) Describe how n, O_L and X_0 may be estimated from a Singular Value Decomposition (SVD) of the Hankel matrix $Y_{0|L}$.
- c) Find a formula for estimating/calculating the system matrix A?
- d) How can we find estimates of the output matrix D and the initial state vector x_0 ?

Task 2 (20%): Deterministic Subspace System Identification

Consider the discrete time deterministic model, ie.

$$x_{k+1} = Ax_k + Bu_k, (4)$$

$$y_k = Dx_k + Eu_k, (5)$$

where the following output and input data matrices are known

$$Y = \begin{bmatrix} y_0^T \\ y_1^T \\ \vdots \\ y_{N-1}^T \end{bmatrix} \in \mathbb{R}^{N \times m}, \ U = \begin{bmatrix} u_0^T \\ u_1^T \\ \vdots \\ u_{N-1}^T \end{bmatrix} \in \mathbb{R}^{N \times r}.$$
 (6)

a) Based on the model in Equations (4) and (5) and with known data as given in (6) we can develop the following matrix equations

$$Y_{0|L} = O_L X_0 + H_L^d U_{0|L+q-1}, (7)$$

$$Y_{1|L} = \tilde{A}_L Y_{0|L} + \tilde{B}_L U_{0|L+g}, \tag{8}$$

where $L \geq 1$ is a user specified positive integer.

- Write down the structure of the matrices in the matrix equations, (7) and (8), with parameters N = 10, L = 2, J = 2 and g = 0.
- Write down the expressions for the matrices \tilde{A}_L and \tilde{B}_L !
- b) By using (6) and Equations (7) and (8) we may formulate the equations

$$Z_{0|L} = O_L X_0^a \tag{9}$$

and

$$Z_{1|L} = \tilde{A}_L Z_{0|L} \tag{10}$$

Find expressions for the data matrices $Z_{0|L}$ and $Z_{1|L}$.

Remark: define the projections which is involved in the expressions for $Z_{1|L}$ and $Z_{0|L}$.

- c) Show how
 - the system matrix A

can be estimated.

d) Assume that the system is single output. Is it then possible to write the deterministic system as a linear regression model?, i.e., as a model

$$y_k = \varphi_k^T \theta \tag{11}$$

where φ_k contains the regressors and θ is a vector of parameters. The answer is YES? or NO?

Task 3 (20%): Prediction error methods

A Kalman filter on innovations form for a linear discrete time system is given by

$$\bar{x}_{k+1} = A\bar{x}_k + Bu_k + Ke_k, \tag{12}$$

$$y_k = D\bar{x}_k + e_k \tag{13}$$

where \bar{x}_k is the predicted state, \bar{x}_1 is the initial state, $y_k \in \mathbb{R}^m$ is the measurement vector and e_k is the innovations process.

We will assume that the following input and output data are known

- a) Write down a Kalman filter on prediction form, i.e. the filter used to compute the predicted measurement, \bar{y}_k , of the measurement y_k .
- b)
- What is the meaning of a parameter vector, θ ?
- Give an example of the relationship between the parameter vector θ and the prediction formulation of a Kalman filter for a single output dynamic system in state space as in (12) and (13) with n = 3 states.
- How many parameters, p, is it in this parameter vector, $\theta \in \mathbb{R}^p$?
- c) Define the prediction error, ε_k , as a function of y_k and \bar{y}_k .
- d) Define and answer the following questions:
 - What is a prediction error criterion, $V_N(\theta)$.
 - Give an example of a prediction error criterion for both a single output system (m = 1) and a multiple output system (m > 1).
 - Describe how the optimal parameter estimate, $\hat{\theta}_N$, can be computed.

Task 4 (20%): Ordinary Least Squares method and recursive system identification

a) Given a system

$$x_{k+1} = ax_k + bu_k + ke_k, (15)$$

$$y_k = x_k + e_k. (16)$$

Write the model as an ARX model and hence as a linear regression model of the form

$$y_k = \varphi_k^T \theta_0 + e_k \tag{17}$$

- In particular, define the regression vector, φ_k , and the parameter vector, θ_0 .
- Also define the parameter k for this to be true?.

b)

- Based on the regression model in step a) above, find a predictor, $\bar{y}_k(\theta)$, for the measurement y_k .
- Define the prediction error, ε_k .
- c) Consider the following prediction error criterion

$$V_N(\theta) = \frac{1}{N} \sum_{k=1}^{N} \varepsilon_k^T \Lambda \varepsilon_k$$
 (18)

where Λ is a specified and symmetric weighting matrix.

Find the Ordinary Least Squares (OLS) estimate, $\hat{\theta}_N$, of the true parameter vector θ_0 .

d) Based on the OLS solution in step c) above, show how we can develop a recursive Ordinary Least Squares (ROLS) method of the following form

$$\hat{\theta}_t = \hat{\theta}_{t-1} + K_t (y_t - \varphi_t^T \hat{\theta}_{t-1})$$
(19)

You shall in particular find equations for computing the gain, K_t , in Equation (19).

Task 5 (20%): Various questions

a) Given a system modelled by the linear model

$$Y = XB + E \tag{20}$$

where $Y \in \mathbb{R}^{N \times m}$ and $X \in \mathbb{R}^{N \times r}$ are known data matrices $E \in \mathbb{R}^{N \times m}$ is a matrix of normally distributed white noise. We are assuming a large number of observations, N, such that N > r.

Find an Ordinary Least Squares (OLS) estimate, B_{OLS} , of the unknown matrix of regression coefficients, B.

- b) Assume that the data matrix X is not of full column rank.
 - Show how you can perform a principal Component Analysis (PCA) of the X matrix by using a Singular Value Decomposition (SVD). What is the number of Principal Components, a.
 - Find a Principal Component Regression (PCR) estimate, B_{PCR} , of the unknown matrix of regression coefficients, B.
- c) You should in this sub task find a state space model realization, i.e., obtain the state space model matrices (A, B, D), from known impulse responses matrices, by using Hankel matrix realization theory. I.e. answer the following:
 - Write down the Hankel matrices $\mathbf{H}_{1|L}$ and $\mathbf{H}_{2|L}$ where you should use L=2.
 - Show how you can find the system order, n, the extended observability matrix O_L and the extended controllability matrix C_L from a Singular Value decomposition (SVD) of $\mathbf{H}_{1|L}$.
 - Show how the D and B matrices can be found.
 - Show how the A matrix can be found.
- d) Given a system modelled by a discrete time, state space model as follows

$$x_{k+1} = Ax_k + Bu_k + v_k, \tag{21}$$

$$y_k = Dx_k + Eu_k + w_k, (22)$$

where v_k is white process noise and w_k is white measurements noise.

- Write down a Kalman filter on apriori-aposteriori form for optimal estimation of the state vector x_k .
- Show how the apriori-aposteriori formulation of the Kalman filter kan be written as a Kalman filter on innovations form.