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Topic: System identification and optimal estimation

Exercise 6, State estimation and Kalman filter

Task 1

Given a Single Input and Single Output (SISO) system with one state described
by the following model

ẋ = ax + bu + cv, (1)
y = dx + w, (2)

where x is the internal state in the system, y is the measured output, v is
an uncorrelated zero mean white noise process with given variance, w is an
uncorrelated zero mean white noise process with given variance, i.e.,

E(v(t)) = 0 and E(v(t)vT (t + τ)) = q2
0δ(τ) (3)

E(w(t)) = 0 and E(w(t)wT (t + τ)) = r2
0δ(τ) (4)

where

δ(τ) = 1 for τ = 0 (5)
δ(τ) = 0 for τ 6= 0 (6)

Vi also define

V = E(v(t)vT (t)) = q2
0, (7)

W = E(w(t)wT (t)) = r2
0, (8)

for further use in the exercise.
Remarks
q2
0 is the variance (covariance) to the noise process v and q0 is the standard

deviation, i.e., the standard deviation is the square root of the variance. If
v is a white noise vector then it have a covariance matrix E(v(t)vT (t)) = V .
This matrix is symmetric and positive definite, V > 0, when no noise variables
in v are exactly identical to zero. Otherwise, the covariance matrix V will be
positive semi definite, i.e. V ≥ 0.
The Cholesky factorization of the covariance matrix can be computed for sym-
metric and positive definite matrices, e.g. when V > 0, i.e. V = V0V

T
0 where

V0 is an upper triangular matrix. The Cholesky factorization is some thimes
loosely spoken called a square root factorization. The standard deviation of
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each noise variable, vi, in the noise vector v is then given as the square root of
the corresponding diagonal element in the covariance matrix V . The diagonal
element vii, in the matrix V is the variance for the noise process vi, where vi is
element number i in the vector v.
Note that if v is known at a (large) number N of discrete time instants then
the covariance matrix V can be estimated (computed) as follows

V =
1
N

N−1∑

t=0

vtv
T
t biased estimate (9)

V =
1

N − 1

N−1∑

t=0

vtv
T
t unbiased estimate (10)

A state estimator for a linear dynamic system ẋ = Ax + Bu + Cv, y = Dx + w
is given by

˙̂x = Ax̂ + Bu + K(y − ŷ), (11)
ŷ = Dx̂, (12)

where the optimal Kalman filter gain matrix, K, is given by

K = XDT W−1, (13)

where the covariance matrix of the estimation error X = E((x− x̂)(x− x̂)T ) is
given as the positive definite solution to the following matrix Riccati equation

Ẋ = AX + XAT −XDT W−1DX + CV CT , (14)

where the initial covariance matrix X(t0) is specified or given.

a) Find the optimal stationary state estimator (stationar Kalman filter), for
the system in (1) and (2). Note that the stationary Kalman filter is
obtained by putting Ẋ = 0 in (14). It can also be shown that this is
the optimal filter for time invariant systems, i.e. for systems in which the
model matrices A, C, D and so on is constant and not dependent on time,
t.

b) Discuss the solution as functions of the standard deviations q0 and r0.

c) Given numerical values for the system parameters, i.e. a = −0.1054, b =
0.5268, c = 0.6322, d = 1, as well as standard deviations for the noise
processes, q0 = 0.1 and r0 = 0.1. We also assume a sampling time ∆t = 1
[s].

• Find the time constant of the system.

• Find the Kalman filter gain, K, by putting numerical values into the
solution found in Step 1a).
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• Find the Kalman filter gain , K, by using the MATLAB Control
System Toolbox function lqe.

• Simulate the system with the state estimator in parallel. The sim-
ulations should be performed by using a for loop. Use the explicit
Euler method in order to solve (discrete) the continuous equations.
Discrete time white noise processes vk and wk can be obtained by
using the MATLAB function randn. A sufficient simulation horizon
may be five to ten times the time constant in the system, and also
dependent on the variations in the input u.

Task 2

a) Make a discrete time state space model of the continuous model in Step 1c).
use a zero order hold method for the discretization method, i.e. so that
the variables u and v are constant over the sampling interval, ∆t = 1.
The model shoud be of the form

xk+1 = axk + buk + cvk, (15)
yk = dxk + wk. (16)

Use the MATLAB function c2dm or c2d in order to find the parameters
a, b, c and d in the discrete time model.

b) Write down a Kalman filter on apriori aposteriori form. The Kalman filter
gain can be computed by the MATLAB function dlqe.

c) Simulate the discrete time Kalman filter in Step b) above.

d) Write down the corresponding Kalman filter on innovations form.

Task 3

Given a SISO one state system as described by the following model

ẋ = ax + bu + cv (17)
y = x + w (18)

The model is the same as in Task 1 but the noise process is not zero mean but
it rather have a non-zero mean given by

E(v) = v̄ (19)

a) Assume that the noise is slowly varying. The noise can then be modelled
as a so called random walk, i.e.

vt+1 = vt + ∆tdvt discrete noise model (20)
v̇ = dv continuous noise model (21)
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where ∆t is the sampling time. Note that the discrete noise model is
obtained by discretizing the continuous model by using the explicit Euler
method. dv is a zero mean white noise process with covariance q2

0. Make
an augmented model of the process model and the noise model which can
be used to construct an optimal state estimator for both estimating x and
the colored noise v.

b) Find an optimal estimator, kalman filter, for the augmented system. use
an infinite time horizon, e.g. use the stationary Kalman filter equations.
Use with advantage the MATLAB function lqe. Numerical values may be
a = −1, b = 0.5, c = 0.6, r0 = 1 and 0.01 ≤ q0 ≤ 10. Simulate the system
by using a for loop as well as using the MATLAB function dlsim.
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