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Exercise 7, State estimation and extended Kalman
filter

Exercise text

We will in this exercise study state estimation and system identification of a
chemical reactor. In particular, the following topics are studied:

• Extended Kalman filter (i.e., state estimation in non-linear systems).

• Augmented kalman filter (i.e., combined state and parameter estimation).

• Subspace system identification of process operated in open loop.

• Subspace system identification of process operated in closed loop).

The process and the model we are to work with are earlier used in the Control
theory course. The reaction kinetics for the reactor are given by

A
k1→ B

k2→ C, (1)

2A
k3→ D. (2)

Note that we have a 2nd order reaction from product A to product D, and
that the other reactions are of 1st order. The goal is to study and control the
fraction of product B in the reactor. The product C and D are undesired bi
products. The control to the reactor is the feed flow rate u i [ 1

timer]. The
fraction of product A in the feed flow rate, u, is θ. The fractions of products A
and B in the reactor are x1 and x2 respectively. As we see the reaction kinetics
for products C and D does not influence upon products A and B. The process
model from the input u to the output y = x2 is given by the non-linear model,

ẋ1 = −k1x1 − k3x
2
1 + (θ − x1)u, (3)

ẋ2 = k1x1 − k2x2 − x2u, (4)
y = x2, (5)

where the reaction coefficients are given by k1 = 50, k2 = 100, k3 = 10. The
following steady state values for the states, the control, the disturbance and the
parameter are given: xs

1 = 2.5, xs
2 = 1, us = 25 and θs = 10, respectively.

We will in the first part of the exercise assume that θ is constant and known,
i.e., θ = θs. Lather, we will assume that θ is an unknown parameter which we
want to estimate.
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a) Non-linear discrete time model

Make a discrete time state space model by using the Explicit Euler method
on the continuous time state space model, i.e., the model should be of the
following form

xk+1 = fk(xk, uk, θk), (6)
yk = gk(xk). (7)

b) Linearized discrete time model

With respect to the non-linear discrete time model in step a), find a
linearized discrete time model of the form

δxk+1 = Aδxk + Bδuk + Cδθk, (8)
δyk = Dδxk. (9)

An alternative method of obtaining the discrete time linearized model is
as follows. First, find a linearized continuous time model of the form

δẋ = Acδx + Bcδu + Ccδθ, (10)
δy = Dcδx. (11)

from the continuous non-linear model. Find a discrete time model of this
model by using explicit Euler and compare this model by the discrete
time linearized model found above. You should obtain the same lineaized
discrete time model!

c) Extended Kalman filter
We assume that the real process can be modelled by

xk+1 = fk(xk, uk, θk) + vk, (12)
yk = gk(xk, uk) + wk. (13)

where vk is process noise (which e.g. represents unmodelled effects), wk

is measurements noise. The following covariance matrices are assumed

V =

[
0.01 0
0 0.01

]
, W = 1.0 · 10−8 (14)

Noise processes with such covariance can be generated in MATLAB as
follows

v=0.1*randn(N,2)
w=0.0001*randn(N,1)
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• Write down an algorithm for an extended Kalman filter. Be care of
the order of the equations.

• Find the stationary Kalman filter gain matrix, K. Use the dlqe.m
function in the MATLAB Control Toolbox.

• Simulate the system with a stationary discrete time extended Kalman
filter.

• Simulate the system with a time variant discrete time extended
Kalman filter.

d) Augmented and extended Kalman filter
We will in this subtask estimate the unknown disturbance, θ, in addition
to the system state vector, xk. We also assume that θ is slowly varying
in such a way that it can be modelled by a so called ”random walk”, i.e.

θk+1 = θk + dθk, (15)

where dθk is white noise with zero mean. You are in this subtask to write
down an augmented and extended Kalman filter algorithm.

• Write down an augmented model for the discrete time process model
and the disturbance (parameter) model.

• Design a kalman filter for the estimation of the state vector, xk, and
the disturbance, θk.

e) System identification

We want to identify a linearized discrete time state space model by using
the dsr.m function. The data are collected in open loop and where the
input experiment is generated by the pseudo random binary signal

U = u^s+prbs1(N,30,150);

Simulate the system without noise, i.e., with wk = 0 and vk = 0, and the
above input and store the outputs in a vector Y . A state space model can
then be identified by

[A,B,D,E,C,F,x0]=dsr(Y,U,L,g);

It will be natural to chose the parameters g = 0 and L ≥ 3.

• Alternative 1: using the data directly
The system have two states. There also is a mean value in y which
is different from zero. This non zero mean give rise to one additional
state such that the total model will have n = 3 states. Chose L = 3
and and identify a 3rd order model.
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• Alternative 2: using centered data
use the dsr.m function in order to identify a 2nd order model by
using the centered data, i.e.,

dY = Y-1
dU = U-25
[A,B,D,E,C,F,x0]=dsr(dY,dU,L,g);

f) System identification in closed loop
Assume now that the system is controlled by a discrete PI controller given
by

uk = Kp(rk − yk) (16)

zk+1 = zk + ∆t
Kp

Ti
(rk − yk) (17)

where Kp = 50 and Ti = 1
75 . Simulate the controlled system by using an

initial value for the controller state as, z1 = us = 25 and the following
reference signal

dR=prbs1(N,30,150);
R=ones(N,1)+0.1*dR;

Based on the observed process data Y and U from the closed loop ex-
periment, then identify a state space model by using the dsr.m function.
You can use the same alternatives as in Step e) above.
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Reactor with Kalman filter

% File: losn_reak_kf.m
% Solution proposal for the Kalman filter part of Exercise 7
% Topic/Course: System identification and optimal estimation.

clear all

% Process parameters and steady state values.
x1s=2.5; x2s=1; ths=10; us=25;
k1=50; k2=100; k3=10;

% Time horizon, sampling interval etc. used in the simulations
dt=0.001; t0=0; t1=0.2;
t=t0:dt:t1; N=length(t);

ifilt=0;
ifilt=dread(’Stationary (0) or time variant Kalman filter (1) ?(0-1)’,ifilt);

% Initializing arrays used in the simulations
X=zeros(N,2); Y=zeros(N,1); U=ones(N,1)*us; f=zeros(2,1);
Xh=X;

% Linearized continuous time model
Dc=[0,1];
a11=-k1-2*k3*x1s-us; a12=0;
a21=k1; a22=-k2-us;
Ac=[a11,a12;a21,a22];
Bc=[ths-x1s;-x2s];
Cc=[us;0];

% Linearised discrete time model
A=eye(2)+dt*Ac;
B=dt*Bc;
C=dt*Cc;
D=Dc;

% Discrete process and measurements noise.
v=0.1*randn(N,2);
w=0.0001*randn(N,1);

% Stationary (steady state) Kalman filter gain matrix
%W=1; V=diag([10,10]);
W=1e-8; V=diag([0.01 0.01]);
[K,Xb,Xh]=dlqe(A,eye(2),D,V,W);

% Simulation
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x=[x1s;x2s];
xb=x+0.1;
for k=1:N

% get the measurements from the process.
y=D*x; %+w(k);

Y(k,:)=y’;
X(k,:)=x’;

if k<20; u=U(k); else; u=25; end % Make a step in the control at k=21

% Kalman filter
yb=D*xb;
xh=xb+K*(y-yb); % Aposteriori state estimate at time k.

if ifilt==1
K=Xb*D’*inv(D*Xb*D’+W);

end

%xb=A*xh+B*u+C*ths; % Updating the apriori state estimate.
f(1)=-k1*xh(1)-k3*xh(1)^2+(ths-xh(1))*u;
f(2)=k1*xh(1)-k2*xh(2)-xh(2)*u;
xb=xh+dt*f;
if ifilt==1

Xh=(eye(2)-K*D)*Xb*(eye(2)-K*D)’+K*W*K’;
Xb=A*Xh*A’+V;

end

Xhat(k,:)=xh’;
Xbar(k,:)=xb’;

% Process, updating the process state vector.
f(1)=-k1*x(1)-k3*x(1)^2+(ths-x(1))*u +v(k,1);
f(2)=k1*x(1)-k2*x(2)-x(2)*u +v(k,2);
x=x+dt*f;

end
% Plot some results
plot(t,X(:,2),’r-’,t,Xhat(:,2),’b--’,t,Xbar(:,2),’k-.’);
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System identification of reactor: open loop experi-
ment

% main_reak_ol.m
% Aapen sloeyfe-simulering og systemidentifikasjon av reaktor
% Skisse til loesningsforslag for oeving 7, punkt e).

clear all

% Prosessparametre.
x1s=2.5;x2s=1; ths=10; us=25;
k1=50; k2=100; k3=10;
d=[0,1];

% Tidshorisont og samplingsintervall
dt=0.001;
t=0:dt:1;
N=length(t);

% Generere forsoek i u_k.
dU=prbs1(N,30,150);
U=us+dU;

% Prosess og maalestoey.
w=randn(N,1)*0.0000;
v=randn(N,2)*0.0;

x=[x1s;x2s];
for k=1:N

% "Henter" maalingen fra prosessen
y=d*x+w(k);

% Lagrer/logger data
X(k,:)=x’;
Y(k,:)=y’;

% Integrerer prosessmodellen
u=U(k);
fx1=-k1*x(1)-k3*x(1)^2+(ths-x(1))*u+v(k,1);
fx2=k1*x(1)-k2*x(2)-x(2)*u +v(k,2);
x=x+dt*[fx1;fx2];

end

% Systemidentifikasjon, benytter dataene direkte.
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L=3; J=4;
[a,b,d,e,c,f,x0]=dsr(Y,U,L,0,J,1,3);
ym=dlsim(a,b,d,e,U,x0);

% Plotter resultatene
figure(1)
subplot(211), plot(t,U), title(’Forsoek i paadraget: u_k’), grid
subplot(212), plot(t,[Y ym]), title(’Utgang og estimert utgang’), grid
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System identification of reactor: closed loop experi-
ment

% main_reak_cl.m
% Lukket slyfe simulering av reaktor med PI-regulatror.
% Skisse til loesning av oving 7, punkt f).

clear all

% Prosessparametre.
x1s=2.5;x2s=1; ths=10; us=25;
k1=50; k2=100; k3=10;
d=[0,1];

% Tidshorisont og samplingsintervall
dt=0.001; % Samplingsintervall
t=0:dt:1; t=t’;
N=length(t);

% Prosess og maalestoey.
w=randn(N,1)*0.0001;
v=randn(N,2)*0.1;

% Referansesignal
dR=prbs1(N,30,150);
R=ones(N,1)+0.1*dR;

% regulatorparametre
Kp=50; Ti=1/75;

z=25; % Initialverdi paa regulatortilstanden
x=[x1s;x2s]; % Initialverdi for tilstandsvektoren

for k=1:N
% "Henter" maalingen fra prosessen
y=d*x+w(k);

% PI-regulator.
e=R(k)-y;
u=Kp*e+z;
z=z+dt*Kp*e/Ti;

% Lagrer variable
X(k,:)=x’;
Y(k,:)=y’;
U(k,:)=u’;
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% Integrerer prosessmodellen
fx1=-k1*x(1)-k3*x(1)^2+(ths-x(1))*u+v(k,1);
fx2=k1*x(1)-k2*x(2)-x(2)*u +v(k,2);
x=x+dt*[fx1;fx2];

end

% Identifikasjon vha DSR
L=3; J=4;
[a,b,d,e,c,f,x0]=dsr(Y,U,L,0,J,1,3);
ym=dlsim(a,b,d,e,U,x0);

figure(1)
subplot(411), plot(t,R),
title(’Referansesignal: r_k’), grid
subplot(412), plot(t,U)
title(’Paadragssignal: u_k’), grid
subplot(413), plot(t,[Y ym])
title(’Utgang og estimert utgang’), grid
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