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Abstract

This paper is aimed at identifying a linear time-invariant dynamical model (LTI model with lumped parameters) of an activated

sludge process. Such a system is characterized by stiff dynamics, nonlinearities, time-variant parameters, recycles, multivariability

with many cross-couplings and wide variations in the inflow and the composition of the incoming wastewater. In this simulation

study, a discrete-time identification approach based on subspace methods is applied in order to estimate a nominal MIMO state-

space model around a given operating point, by probing the system in open-loop with multi-level random signals. Six subspace

algorithms are used and their performances are compared based on adequate quality criteria, taking into account identification/

validation data. As a result, the selected model is a very low-order one and it describes the complex dynamics of the process well.

Important issues concerning the generation of the data set and the estimation of the model order are discussed.

r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Advanced engineering applications require suitable
mathematical models. System identification deals with
the problem of obtaining models of dynamic systems
from measured input–output data. This issue is of
interest in a variety of applications, ranging from
chemical process simulation and control to identifica-
tion of vibrational modes in flexible structures. The most
traditional system identification techniques are the
prediction error method (PEM) and the instrumental
variable method (IVM). These methods are primarily
used with the so-called black-box model structures
(Viberg, 1995).
The field of linear system identification is by now

quite advanced. The traditional identification techniques
offer good solution to many real-world problems.
However, several important problems remain to be
solved. The PEM has excellent statistical properties

provided the ‘‘true’’ PEM estimate can be found.
Nevertheless, computing the PEM model can sometimes
be overwhelmingly difficult. In general, a multi-dimen-
sional nonlinear optimization problem must be solved.
On the other hand, the IVM attempts to deliver
parameter estimates by only solving linear equation
systems. However, the use of these models is quite
cumbersome in the general multivariable case, and the
numerical reliability may be unacceptably high for
complex cases involving large system orders and many
outputs (Viberg, 2002). The preferred model structure
for complex problems is therefore a state-space model.
Subspace-based system identification method is a

branch that has been recently developed in system
identification (around 10 years old by now), which has
attracted much attention, owing to its computational
simplicity and effectiveness in identifying dynamic state-
space linear multivariable systems. These algorithms are
numerically robust and do not involve nonlinear
optimization techniques, i.e., they are fast (noniterative)
and accurate (since no problems with local minima
occur). The computational complexity is modest
compared to PEM, particularly when the number of
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inputs and outputs is large. Because applications of
large dimensions are commonly found in the process
industry, subspace identification methods are very
promising in this field. As a result, a large number of
successful applications of subspace identification meth-
ods for simulated and real processes have been reported
in the literature.
In this paper, a low-order LTI discrete-time state-

space multivariable model that describes the nitrate
concentrations in the anoxic and aerobic zones of an
activated sludge process (ASP) is estimated around an
operating point. Several subspace identification methods
are applied and their performances are compared in
order to select the best-obtained model. It can be used to
control the process, e.g., as in Lindberg (1997), where a
multivariable control algorithm based on a subspace
model is used to regulate an ASP. Previous performance
comparisons of several subspace methods, applied to
other processes, can be found in Abdelghani, Verhae-
gen, Van Overschee, and De Moor (1998), Katayama,
Omori, and Picci (1998), Favoreel, Van Huffel, De
Moor, and Sima (1999) and Juricek, Seborg, and
Larimore (2001).
The structure of the paper is as follows: in the next

section the main issues related to subspace identification
methods and the subspace algorithms to be used in this
study are shown. Section 3 briefly presents the ASP.
Section 4 discusses the important steps in developing a
suitable subspace model for the process and compares
the performance of six subspace algorithms. Finally,
Section 5 provides conclusions.
In this work, the ASWWTP-USP (Activated Sludge

Wastewater Treatment Plant—University of S*ao Paulo)
benchmark (Sotomayor, Park, & Garcia, 2001a) is used
as a data generator. This benchmark simulates the
biological, physical and biochemical interactions that
occur in a complex activated sludge plant.

2. Subspace identification methods

The discrete-time subspace identification methods
refer to a class of algorithms whose main characteristic
is the approximation of subspaces generated by the rows
or columns of block-Hankel matrices of the input–
output data, to calculate a reliable discrete-time state-
space model of the following form:

xkþ1 ¼ Axk þ Buk þ zk;

yk ¼ Cxk þ Duk þ Zk; ð1Þ

with

E
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 !
zTq ZTq
� �" #

¼
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 !
dpqX0; ð2Þ

where xkARnx1 represents the states vector, ukARmx1 is
the manipulated input vector and ykARlx1 is the process
output vector. AARnxn is the system (state transition)
matrix, BARnxm is the input matrix, CARlxn is the
output matrix and DARlxm is the direct input to output
matrix. zkARnx1 is called the process noise and ZkARlx1

is called the measurement noise. They are assumed to be
unmeasurable gaussian-distributed zero-mean, station-
ary white noise vector sequences. The matrices QARnxn;
SARnxl and RARlxl are the covariance matrices of the
noise sequences zk and Zk: E denotes the expected value
operator and dpq the Kronecker delta. The time index k

denotes a discrete (sampled) system.
In subspace identification, it is typically assumed that

the number of available samples goes to infinity, and
that the data is ergodic. The following assumptions have
been considered related to (1):

* the system is asymptotically stable;
* the pair ðA;BÞ is controllable; and
* the pair ðA;CÞ is observable.

It is common practice to distinguish among the three
possible situations regarding the inputs acting on the
system:

* the purely deterministic case ðzk ¼ Zk ¼ 0Þ;
* the purely stochastic case ðuk ¼ 0Þ; and
* the combined deterministic/stochastic case.

Subspace-based methods for state-space modeling
have their origin in state-space realization, as developed
by Ho and Kalman (1966). These techniques determine
a state-space model from a given impulse response,
which received a tremendous attention in the signal
processing area in the late 1970s. In the system
identification area, one usually has available input–
output data rather than measured impulse response. In
this context, subspace methods were developed in the
late 1980s.
The term ‘‘subspace identification method’’ was first

introduced by Verhaegen and Deprettere (1991). There
are now many different versions of subspace methods.
These include an early version of subspace algorithm
presented in the paper by Moonen, De Moor, Vanden-
berghe, and VandeWalle (1989), Canonical Variate
Analysis (CVA) by Larimore (1983, 1990), Multivari-
able Output-Error State-sPace model identification
(MOESP) by Verhaegen and Dewilde (1992), Instru-
mental Variable Subspace-based State-Space System
IDentification (IV-4SID) by Ottersten and Viberg
(1994), Numerical algorithm for Subspace State Space
System IDentification (N4SID) by Van Overschee and
De Moor (1994, 1996), Canonical Correlation Analysis
(CCA) by Peternell, Scherrer, and Deistler (1996) and
Deterministic and Stochastic subspace system identifica-
tion and Realization (DSR) by Di Ruscio (1997).
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All subspace identification methods consist of three
main steps: estimating the predictable subspace for
multiple future steps, then extracting state variables
from this subspace and finally fitting the estimated states
to a state-space model. Nevertheless, each subspace
identification method looks quite different from others
in concept, computational tools and interpretation. The
major differences among these subspace identification
methods lie in the regression or projection methods used
in the first step to remove the effects of the future inputs
on the future outputs and, thereby, estimate the
predictable subspace, and in the latent variable methods
used in the second step to extract estimates of the states.
A general overview of the state-of-the-art in subspace
identification methods is presented in De Moor, Van
Overschee, and Favoreel (1999) and Favoreel, De Moor,
and Van Overschee (2000).
The major advantages of these algorithms are that

they only need input–output data and very little prior
knowledge about the system. In addition, these algo-
rithms are based on system theory, geometry and
numerically stable noniterative linear algebra opera-
tions, such as QR (or LQ)–factorization, SVD (singular
value decomposition) and its generalizations, for which
good numerical tools are well-known (Golub & VanLo-
an, 1996). A drawback against subspace identification
approach is that the physical insight of the process, in
the obtained model, is lost, which is a characteristic
of black-box models. For example, the states are
‘‘artificial’’ and it is not possible to understand how a
process variable, which is not directly included in the
model, affects the process. Furthermore, a large
amount of data is required to obtain accurate models.
Actually, generating and collecting data of some
processes can be too expensive. Important issues
involved in developing a model through subspace
identification methods can be found in Amirthalingam
and Lee (1999).
Subspace identification methods have recently

reached a certain level of maturity. The subspace
identification algorithms considered in this paper are:

CCA: unconstrained CCA algorithm (uCCA), essen-
tially the same CVA algorithm proposed by Larimore
(1983); and constrained CCA algorithm (cCCA),
proposed by Peternell et al. (1996).

MOESP: refined version of the past outputs (PO)
scheme of the MOESP algorithm in the SMI Toolbox by
Haverkamp and Verhaegen (1997).

N4SID: N4SID function (n4sid.m) in the MATLAB
System Identification Toolbox v.4.0.4 (Ljung, 1997),
that implements the N4SID algorithm from Van Over-
schee and De Moor (1994) and the ‘‘robust’’ N4SID
algorithm from Van Overschee and De Moor (1996).

DSR: DSR algorithm in the D-SR Toolbox by Di
Ruscio (1997).

As previously mentioned, the purpose of the present
paper is to compare the performance of these methods
and not to analyze their implementational differences.
As for the detailed algorithms, the differences between
these subspace identification methods seem to be so
large that it is hard to find the similarities between them.
Nevertheless, Van Overschee and De Moor (1995)
showed that the subspace methods CVA, MOESP and
N4SID are actually related to each other and that they
differ only in the choice of weighting functions in a
minimization problem. Di Ruscio (2000) reports the
main differences and similarities among the algorithms
CVA, MOESP, N4SID and DSR.

3. Description of the process

The ASWWTP-USP benchmark is a dynamic model,
developed to simulate the processes that occur in a
biological wastewater treatment plant (WWTP). The
benchmark represents a continuous-flow pre-denitrify-
ing ASP, a frequently applied system for removal of
organic matter and nitrogen from municipal effluents,
predominantly domestic, operating at a constant tem-
perature of 151C and neutral pH. The layout of the
process is shown in Fig. 1.
The process configuration is formed by a bioreactor

composed of an anoxic zone (zone 1 with 13m3), two
aerobic zones (zones 2 and 3 with 18 and 20m3,
respectively) and a secondary settler (20m3). In nominal
steady-state conditions, the influent rate of raw waste-
water is Qin ¼ 4:17m3/h, with an average proportion of
224mg COD/l of biodegradable organic matter and
44.88mg N/l of total Kjeldahl nitrogen (TKN) and a
hydraulic retention time of 17.0 h (based on total
volume, i.e. bioreactor+secondary settler). The internal
recycle flow rate is Qint ¼ 1:3Qin; the external sludge
recycle flow rate is Qsl ¼ 0:5Qin; the wastage flow rate
is Qw ¼ 25:8 l/h and the external carbon flow rate is
Qext ¼ 0:0 l/h. In this case, an external carbon source is
available, constituted by pure methanol, in a 33%-
solution with a concentration of 80,000mg COD/l. In
the aerobic zones, the dissolved oxygen (DO) concen-
tration is controlled in 2.0mg O2/l by simple PI
controllers and in the anoxic zone it is assumed zero
DO concentration.

Q in
Zone 1 Zone 2 Zone 3

Q

Q f

Q Qw

Qe

Q

Qair

ext

int
sl

Fig. 1. Layout of the ASWWTP-USP benchmark.
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For a reliable simulation of an ASP, the ASWWTP-
USP benchmark is based on models widely accepted by
the international community. Each bioreactor zone is
modeled by IWA Activated Sludge Model ASM1
(Henze, Gujer, Marais, & Matsuo, 1987) and the
secondary settler is modeled by the double-exponential
settling velocity model of Tak!acs, Patry, and Nolasco
(1991). The complete plant model includes 52 large,
complex, coupled nonlinear differential equations,
which were implemented in Matlab/Simulink v.5.3.
The values of the process parameters are here omitted,
but they can be found in Sotomayor et al. (2001a). For
more realistic simulations, a white noise, with zero-mean
and standard deviation 0.05, was added to the outputs
produced by the benchmark.

4. Identification of a subspace model for the ASP

4.1. Generation and pre-treatment of data set

It is not very easy to select either the input or the
output variables of the process. In this work, the nitrate
concentrations in the anoxic zone SNO;1 (mg N/l) and in
the last aerobic zone SNO;3 (mg N/l) are selected as
outputs. The internal recirculation rate Qint (m

3/h) and
the external carbon dosage Qext (l/h) are considered as
inputs. However, to improve the model influent flow
rate Qin (m

3/h), influent readily biodegradable substrate
SS;in (mg COD/l) and influent ammonium concentration
SNH;in (mg N/l) are assumed as measurable disturbances,
while influent nitrate concentration SNO;in (mg N/l) is
assumed as an unmeasurable disturbance. The signals
used in the identification procedure are summarized in
Fig. 2. Note that all disturbances are considered as
inputs.
Pseudo-random binary sequences (PRBS) are widely

used in the identification of linear systems. The
advantages of the PRBS input include easy implementa-
tion and an autocorrelation function similar to white
noise. However, since the PRBS consists of only two
levels, the resulting data may not provide sufficient

information to excite nonlinear dynamics. Additionally,
a PRBS signal of a too large magnitude may bias the
estimation of the linear kernel. Multi-level (m-level)
sequences, in contrast, allows the user to highlight
nonlinear system behavior while manipulating the
harmonic contents of the signal, reducing the effect of
nonlinearities in the resulting linear model (Godfrey,
1993). On the other hand, the ill-conditioning of probing
inputs may lead to a substantial deterioration of
performance of the subspace algorithms. This possible
cause of ill-conditioning has to do with wide variations
in the amplitude of the input spectrum and with
frequency bands, where the spectrum is nearly zero
causing ‘‘insufficient excitation’’ (Chiuso & Picci, 2000).
In the present paper, the input signals correspond to

m-level uniformly distributed and not cross-correlated
random sequences. These signals are periodic, determi-
nistic and have autocorrelation functions similar to
white noise. Their amplitudes and frequencies were
chosen so as to adequately excite the system, without
deviating too much from the normal operating point
and, therefore, enabling the identification of a suitable
linear model. All input and output data signals were
acquired at a sampling rate of 9.6min in a total period
of 224 h (1400 samples).
For a better identification result, the raw data set is

pre-processed. As the data set is generated from a
simulation model, no data pre-filtering is necessary.
However, since the system is running at an operating
point different from zero and hence introducing some
DC offsets, subtraction of the sample mean from the
data set is done in order to remove these offsets. This
operation is common in system identification (S .oder-
str .om & Stoica, 1989). As pointed out by Chui (1997), it
is important to make sure that the scales of the input–
output data are of comparable sizes. Therefore, all data
signals are normalized aiming to be equally weighted.
Finally, the data set is detrended in order to remove
linear trends from input–output data. This step is usual
in signal processing. Asymptotic properties of subspace
procedures, when the data set is pre-processed by
removing trends and periodic components, are pre-
sented in (Bauer, 2000a). The pre-processed signals are
shown in Figs. 3–5.
The identification procedure was carried out off-line

in batch form by using the first 1000 samples of the data
set, whereas the remaining 400 samples were applied to
model validation. In the identification procedure the
purely deterministic case was considered.

4.2. Order estimation

There is an extensive literature for order estimation
algorithms related to linear, dynamical, state-space
systems. Maybe the most important contribution can
be attributed to the Akaike Information Criterion (AIC)

ASWWTP-USP
Benchmark

Qint

Qext

S S

S

S

S

Qin

NO,in

NO,3

NO,1

NH,inS,in

Fig. 2. Signals for subspace identification.
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for deciding the appropriate order of a statistical model
(Akaike, 1973). Nevertheless, there are only a few
references dealing with the order estimation in the
context of subspace methods (Bauer, 2001).
In most of the subspace algorithms, the determination

of the system order (n) is very subtle. Ideally, this
information can be determined by the number of the
nonzero singular values of the orthogonal (or oblique)
projections of the row spaces of data block-Hankel
matrices. However, in many situations, when the system
data are noise corrupted, it is not so straightforward to
calculate this number, so that the decision is taken by
detecting a gap in the spectrum of the singular values. In
this case, a visual inspection in Fig. 6 shows that the gap
is not easy to determine, and hence the application of

this strategy becomes subjective and the decision
regarding the model order is an arbitrary one.
According to Bastogne, Noura, Sibille, and Richard

(1998), a more practical procedure is to assume different
system orders and then compare estimation errors, so
that the value n is chosen in agreement with the
minimum error. For instance, subspace identification
methods do not involve error minimization schemes.
These techniques are exclusive of the ‘‘classical’’ PEMs
and they require a larger computational effort. The
determination of the theoretical order, in the sense of
minimization of the estimation error, is shown in Fig. 7,
which was generated using the ‘‘robust’’ N4SID algo-
rithm, where the grey-boxes represent the relative
squared error (RSE) for SNO;1; the white-boxes behind
the grey-boxes, represent the RSE for SNO;3: The solid-
line represents the mean of the RSE indexes (MRSE).
Comparing these relative estimation errors, it can be

Fig. 3. Data sequences of the process: inputs.
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Fig. 4. Data sequences of the process: disturbances.
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noticed that the 3rd, 6th and 7th-order models have
practically the same MRSE index, but for n ¼ 6; it is
slightly lower. Nevertheless, given that the 6th or 7th-
order does not bring enough improvement in compar-
ison with the 3rd-order model, the last one appears to be
a reasonable choice. From the process control’s point of
view, the reduced 3rd-order model is quite suitable.
Anyway, for this particular case, the choice of n has

not been totally convincing because the resulting model
could not be accurate enough to represent the process,
e.g., for monitoring purposes. Another alternative way
to determine the system order is to apply the Akaike’s
statistical procedure (AIC), which is used by the CVA
subspace method. The AIC is defined as

AICðnÞ ¼ N ln s2errorðnÞ
� �

þ 4MnfN ; ð3Þ

where N is the number of samples, s2errorðnÞ is the
modeling error variance, using a n-order model with Mn

parameters, and fN is the small sample correction factor.
The first term of the right-hand side in (3) quantifies the
reduction in the modeling error variance due to the
increase in the model order, whereas the second term
penalizes this same increase. The model order n is
selected corresponding to the minimum AICðnÞ value,
which is considered as being optimal. Nevertheless, it
must be emphasized that this criterion is essentially
statistical and it does not necessarily assure that the
optimum obtained model to be a valid one.
The number of parameters in the state-space model,

deterministic system in (1), is fixed by the general state-
space canonical form as in (Bauer, 2001):

Mn ¼ nm þ nl þ lm ð4Þ

and the small sample correction factor is (Larimore,
1999):

fN ¼
N

N � ðMn=l þ ðl þ 1Þ=2Þ
: ð5Þ

For a large N; fN-1; which is the value used in the
original AIC: In the present problem, the AIC is simply
the mean of the AICs values for each output of the
n-order model. As shown in Fig. 8, the minimum AIC

occurs for n ¼ 3: Therefore, based on the obtained
results, the suitable system order is 3, that correspond to
the number of states or poles of the model.

4.3. Performance quality criteria

In Favoreel et al. (1999), three subspace algorithms
(CVA, MOESP and ‘‘robust’’ N4SID) were applied to
15 different data sets from real-life systems. They
evaluated the algorithms according to their computa-
tional complexity and prediction/simulation error and
concluded that their performance is very similar. In the
present paper, two performance indicators are proposed
to measure identification/validation error, in order to
obtain the best 3rd-order state-space model. The
performance indicators are:
Mean relative squared error (MRSE):

%MRSE ¼
1

l

Xl

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
j¼1 yiðjÞ � #yiðjÞð Þ2PN

j¼1 yiðjÞð Þ2

vuut � 100: ð6Þ

Mean variance-accounted-for (MVAF):

%MVAF ¼
1

l

Xl

i¼1

1�
varianceðyi � #yiÞ
varianceðyiÞ

� �
� 100 ð7Þ

being yi the ith real output and #yi the ith simulated
output produced by the model. The MRSE index is
widely used in the literature, while the MVAF index is,
specifically, used by the SMI Toolbox. Both perfor-
mance indexes are used to evaluate the adequacy of the
model produced by each algorithm.
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Analyzing the values in Table 1, the MOESP model
seems to produce a better model in terms of identifica-
tion, while the DSR model seems to produce a better
model in terms of validation. Hence, in this work, the
3rd-order DSR model was chosen to describe the
process.

4.4. Identification results

The selected deterministic DSR model (proper model)
is described by the following matrices:

A ¼

0:9763 0:0194 0:3268

0:0061 0:8815 0:0893

�0:0023 0:0071 0:9763

2
64

3
75

B ¼

0:0238 �0:0459 �0:1488 �0:0403 0:0002

�0:1295 0:0299 0:0230 0:0185 �0:0052

0:0097 �0:0082 �0:0082 0:0004 0:0036

2
64

3
75
ð8Þ

C ¼
0:2253 �0:4032 �0:1823

0:2668 0:2880 �0:4626

" #

D ¼

0:1292 �0:0193 �0:0651 �0:0312 0:0053

�0:0387 0:0086 0:0126 0:0105 �0:0026

" #

A strictly proper DSR model (i.e., with D ¼ 0) is also
identified, and it is described by

A ¼

0:9763 0:0199 0:3263

0:0062 0:8818 0:0907

�0:0024 0:0072 0:9758

2
64

3
75

B ¼

0:0368 �0:0434 �0:1537 �0:0431 �0:0045

�0:1505 0:0234 0:0357 0:0283 �0:0044

0:0167 �0:0100 �0:0091 0:0003 0:0039

2
64

3
75
ð9Þ

C ¼
0:2259 �0:4026 �0:1810

0:2664 0:2876 �0:4633

" #

The poles (eigenvalues of A) of the proper model
(denoted by +) and the poles of the strictly proper
model (denoted by D) are shown in Fig. 9. The poles
closer to the unit circle are related to the slower system
dynamics. The poles close to 1, show that the data set
seems to contain a phenomenon known as ‘‘co-integra-
tion’’ in econometrics. Based on this observation, it is
possible to obtain models which produce a one-step-
ahead prediction error much smaller (Bauer, 2000b).
Figs. 10 and 11 show the outputs generated by the

identified strictly proper model (dotted-line). As it can
be observed, the identified model for a given operating

Table 1

Numerical results of the performance of the subspace-based algorithms

Algorithm %MRSE %MVAF

Identification Validation Identification Validation

uCCA 40.4417 69.9404 83.5750 73.5628

cCCA 40.1652 69.2404 83.7998 73.9129

MOESP 31.8091 57.5806 89.9037 79.3096

N4SID 44.4914 72.9242 80.0546 74.2431

‘‘robust’’ N4SID 34.8394 57.7508 87.8739 81.2475

DSR 34.2450 50.9904 88.2237 84.4274
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point correctly reproduces the main dynamic character-
istics of the ASP. In these graphics, either the
identification or the validation data were introduced in
the obtained model. In both cases the simulation started
at zero initial conditions.
Given that low-order state-space models sufficiently

representative of the nominal system behavior are a
prerequisite to the systematic design of control systems,
the strictly proper model (9) derived above has been
successfully used in the implementation of an infinite-
horizon LQ control (Sotomayor, Park, & Garcia,
2001b) and a model predictive control (Sotomayor &
Garcia, 2002).

5. Conclusions

In this paper six subspace algorithms, namely uCCA,
cCCA, MOESP, N4SID, ‘‘robust’’ N4SID and DSR,
were used to identify a LTI discrete-time MIMO state-
space model for a complex ASP, and their performance
was compared. As a result, it is stated that a linear
approach of such a nonlinear process is not impossible.
Three structural identification schemes, i.e. singular

value inspection, estimation error minimization and the
optimal statistical Akaike’s criterion, were necessary to
determine a very reduced order model ðn ¼ 3Þ: The
performance comparison study was focused on identi-
fication/validation accuracy issues of each subspace
algorithm, through the use of two performance quality
criteria. For this particular case, in general the results
showed that the performance of the DSR algorithm was
better than that of the ‘‘robust’’ N4SID, but that it was
worse than that of the MOESP algorithm in producing a
3rd-order model in the identification context (with N

large). On the other hand, in the validation context (with
N small), the performance of the ‘‘robust’’ N4SID

algorithm was better than that of the MOESP algo-
rithm, but that it was worse than that of the DSR
algorithm in producing a 3rd-order model. For the other
algorithms, their performance was worse. The selected
deterministic 3rd-order DSR model is able to describe
reasonably well the process and, therefore, it is
well suited for model-based control and monitoring
applications.
It would be interesting to apply recent subspace

identification methods for MIMO bilinear systems to
this process, in order to study the improvement of the
identified model quality and its effect on control and
monitoring performances.
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