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1 The Basic Ideas1.1 10 Basic Questions About System Identi�cation1. What is System Identi�cation?System Identi�cation allows you to build mathematical models of adynamic system based on measured data.2. How is that done?Essentially by adjusting parameters within a given model until its out-put coincides as well as possible with the measured output.3. How do you know if the model is any good?A good test is to take a close look at the model's output compared tothe measurements on a data set that wasn't used for the �t (\ValidationData").4. Can the quality of the model be tested in other ways?It is also valuable to look at what the model couldn't reproduce inthe data (\the residuals"). There should be no correlation with otheravailable information, such as the system's input.1



5. What models are most common?The techniques apply to very general models. Most common models aredi�erence equations descriptions, such as ARX and ARMAX models,as well as all types of linear state-space models. Lately, black-box non-linear structures, such as Arti�cal Neural Networks, Fuzzy models, andso on, have been much used.6. Do you have to assume a model of a particular type?For parametric models, you have to specify the structure. However, ifyou just assume that the system is linear, you can directly estimateits impulse or step response using Correlation Analysis or its frequencyresponse using Spectral Analysis. This allows useful comparisons withother estimated models.7. How do you know what model structure to try?Well, you don't. For real life systems there is never any "true model",anyway. You have to be generous at this point, and try out severaldi�erent structures.8. Can non-linear models be used in an easy fashion?Yes. Most common model nonlinearities are such that the measureddata should be nonlinearly transformed (like squaring a voltage input ifyou think that it's the power that is the stimulus). Use physical insightabout the system you are modeling and try out such transformationson models that are linear in the new variables, and you will cover a lot.9. What does this article cover?After reviewing an archetypical situation in this section, we describethe basic techniques for parameter estimation in arbitrary model struc-tures. Section 3 deals with linear models of black-box structure, andSection 4 deals with particular estimation methods that can be used(in addition to the general ones) for such models. Physically param-eterized model structures are described in Section 5, and non-linearblack box models (including neural networks) are discussed in Section6. The �nal Section 7 deals with the choices and decisions the user isfaced with.10. Is this really all there is to System Identi�cation?Actually, there is a huge amount written on the subject. Experience2



with real data is the driving force to further understanding. It is im-portant to remember that any estimated model, no matter how goodit looks on your screen, has only picked up a simple reection of real-ity. Surprisingly often, however, this is su�cient for rational decisionmaking.1.2 Background and LiteratureSystem Identi�cation has its roots in standard statistical techniques andmany of the basic routines have direct interpretations as well known statis-tical methods such as Least Squares and Maximum Likelihood. The controlcommunity took an active part in the development and application of thesebasic techniques to dynamic systems right after the birth of \modern con-trol theory" in the early 1960's. Maximum likelihood estimation was appliedto di�erence equations (ARMAX models) by [�Astr�om and Bohlin, 1965] andthereafter a wide range of estimation techniques and model parameteriza-tions ourished. By now, the area is well matured with established and wellunderstood techniques. Industrial use and application of the techniques hasbecome standard. See [Ljung, 1986] for a common software package.The literature on System Identi�cation is extensive. For a practical user ori-ented introduction we may mention [Ljung and Glad, 1994]. Texts that godeeper into the theory and algorithms include [Ljung, 1987], and [S�oderstr�om and Stoica, 1989].A classical treatment is [Box and Jenkins, 1970].These books all deal with the \mainstream" approach to system identi�ca-tion, as described in this article. In addition, there is a substantial literatureon other approaches, such as \set membership" (compute all those modelsthat reproduce the observed data within a certain given error bound), estima-tion of models from given frequency response measurement [Schoukens and Pintelon, 1991],on-line model estimation [Ljung and S�oderstr�om, 1983], non-parametric fre-quency domain methods [Brillinger, 1981], etc. To follow the development inthe �eld, the IFAC series of Symposia on System Identi�cation (Budapest,1991, Copenhagen, 1994) is a good source.
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1.3 An Archetypical Problem { ARX Models and theLinear Least Squares MethodThe ModelWe shall generally denote the system's input and output at time t by u(t)and y(t), respectively. Perhaps the most basic relationship between the inputand output is the linear di�erence equationy(t) + a1y(t� 1) + : : :+ any(t� n) = b1u(t� 1) + : : :+ bmu(t�m)(1)We have chosen to represent the system in discrete time, primarily since ob-served data are always collected by sampling. It is thus more straightforwardto relate observed data to discrete time models. Nothing prevents us how-ever from working with continuous time models: we shall return to that inSection 5.In (1) we assume the sampling interval to be one time unit. This is notessential, but makes notation easier.A pragmatic and useful way to see (1) is to view it as a way of determiningthe next output value given previous observations:y(t) = �a1y(t� 1)� : : :� any(t�n)+ b1u(t� 1)+ : : :+ bmu(t�m)(2)For more compact notation we introduce the vectors� = [a1; : : : ; an b1; : : : ; bm]T (3)'(t) = [�y(t� 1) : : :� y(t� n) u(t� 1) : : : u(t�m)]T (4)With these (2) can be rewritten asy(t) = 'T (t)� 4



To emphasize that the calculation of y(t) from past data (2) indeed dependson the parameters in �, we shall rather call this calculated value ŷ(tj�) andwrite ŷ(tj�) = 'T (t)� (5)The Least Squares MethodNow suppose for a given system that we do not know the values of theparameters in �, but that we have recorded inputs and outputs over a timeinterval 1 � t � N :ZN = fu(1); y(1); : : : ; u(N); y(N)g (6)An obvious approach is then to select � in (1) through (5) so as to �t thecalculated values ŷ(tj�) as well as possible to the measured outputs by theleast squares method:min� VN(�; ZN) (7)whereVN(�; ZN) = 1N NXt=1(y(t)� ŷ(tj�))2 == 1N NXt=1(y(t)� 'T (t)�)2 (8)We shall denote the value of � that minimizes (7) by �̂N :�̂N = argmin� VN(�; ZN) (9)(\arg min" means the minimizing argument, i.e., that value of � which min-imizes VN .) 5



Since VN is quadratic in �, we can �nd the minimum value easily by settingthe derivative to zero:0 = dd�VN(�; ZN) = 2N NXt=1'(t)(y(t)� 'T (t)�)which givesNXt=1'(t)y(t) = NXt=1'(t)'T (t)� (10)or �̂N = " NXt=1 '(t)'T (t)#�1 NXt=1 '(t)y(t) (11)Once the vectors '(t) are de�ned, the solution can easily be found by modernnumerical software, such as MATLAB.Example 1 First order di�erence equationConsider the simple modely(t) + ay(t� 1) = bu(t� 1):This gives us the estimate according to (3), (4) and (11)" âNb̂N # = "P y2(t� 1) �P y(t� 1)u(t� 1)�P y(t� 1)u(t� 1) Pu2(t� 1) #�1 "�P y(t)y(t� 1)P y(t)u(t� 1) #All sums are from t = 1 to t = N . A typical convention is to take valuesoutside the measured range to be zero. In this case we would thus take y(0) =0. 6



The simple model (1) and the well known least squares method (11) formthe archetype of System Identi�cation. Not only that { they also give themost commonly used parametric identi�cation method and are much moreversatile than perhaps perceived at �rst sight. In particular one should realizethat (1) can directly be extended to several di�erent inputs (this just callsfor a rede�nition of '(t) in (4)) and that the inputs and outputs do not haveto be the raw measurements. On the contrary { it is often most importantto think over the physics of the application and come up with suitable inputsand outputs for (1), formed from the actual measurements.Example 2 An immersion heaterConsider a process consisting of an immersion heater immersed in a coolingliquid. We measure:� v(t): The voltage applied to the heater� r(t): The temperature of the liquid� y(t): The temperature of the heater coil surfaceSuppose we need a model for how y(t) depends on r(t) and v(t). Some sim-ple considerations based on common sense and high school physics (\Semi-physical modeling") reveal the following:� The change in temperature of the heater coil over one sample is pro-portional to the electrical power in it (the inow power) minus the heatloss to the liquid� The electrical power is proportional to v2(t)� The heat loss is proportional to y(t)� r(t)This suggests the modely(t) = y(t� 1) + �v2(t� 1)� �(y(t� 1)� r(t� 1))7



which �ts into the formy(t) + �1y(t� 1) = �2v2(t� 1) + �3r(t� 1))This is a two input (v2 and r) and one output model, and corresponds tochoosing'(t) = [�y(t� 1) v2(t� 1) r(t� 1)]Tin (5).Some Statistical RemarksModel structures, such as (5) that are linear in � are known in statisticsas linear regression and the vector '(t) is called the regression vector (itscomponents are the regressors). \Regress" here alludes to the fact that wetry to calculate (or describe) y(t) by \going back" to '(t). Models such as(1) where the regression vector { '(t) { contains old values of the variableto be explained { y(t) { are then partly auto-regressions. For that reasonthe model structure (1) has the standard name ARX-model (Auto-regressionwith extra inputs).There is a rich statistical literature on the properties of the estimate �̂Nunder varying assumptions. See, e.g. [Draper and Smith, 1981]. So far wehave just viewed (7) and (8) as \curve-�tting". In Section 2.2 we shall dealwith a more comprehensive statistical discussion, which includes the ARXmodel as a special case. Some direct calculations will be done in the followingsubsection.Model Quality and Experiment DesignLet us consider the simplest special case, that of a Finite Impulse Response(FIR) model. That is obtained from (1) by taking n = 0:y(t) = b1u(t� 1) + : : : bmu(t�m) (12)8



Suppose that the observed data really have been generated by a similar mech-anismy(t) = b01u(t� 1) + : : : b0mu(t�m) + e(t) (13)where e(t) is a white noise sequence with variance �, but otherwise unknown.(That is, e(t) can be described as a sequence of independent random variableswith zero mean values and variances �.) Analogous to (5), we can write thisas y(t) = 'T (t)�0 + e(t) (14)We can now replace y(t) in (11) by the above expression, and obtain�̂N = " NXt=1'(t)'T (t)#�1 NXt=1'(t)y(t)= " NXt=1'(t)'T (t)#�1 " NXt=1 '(t)'T (t)�0 + NXt=1'(t)e(t)#or ~�N = �̂N � �0 = " NXt=1'(t)'T (t)#�1 NXt=1'(t)e(t) (15)Suppose that the input u is independent of the noise e. Then ' and e areindependent in this expression, so it is easy to see that E~�N = 0, sincee has zero mean. The estimate is consequently unbiased. Here E denotesmathematical expectation.We can also form the expectation of ~�N ~�TN , i.e., the covariance matrix of theparameter error. Denote the matrix within brackets by RN . Take expectationwith respect to the white noise e. Then RN is a deterministic matrix and wehave PN = E~�N ~�TN = R�1N NXt;s=1'(t)'T (s)Ee(t)e(s)R�1N = �R�1N (16)9



since the double sum collapses to �RN .We have thus computed the covariance matrix of the estimate �̂N . It isdetermined entirely by the input properties and the noise level. Moreoverde�ne �R = limN!1 1NRN (17)This will be the covariance matrix of the input, i.e. the i� j-element of �R isRuu(i� j), as de�ned by (89) later on.If the matrix �R is non-singular, we �nd that the covariance matrix of theparameter estimate is approximately (and the approximation improves asN !1)PN = �N �R�1 (18)A number of things follow from this. All of them are typical of the generalproperties to be described in Section 2.2:� The covariance decays like 1=N , so the parameters approach the limit-ing value at the rate 1=pN .� The covariance is proportional to the Noise-To-Signal ratio. That is, itis proportional to the noise variance and inversely proportional to theinput power.� The covariance does not depend on the input's or noise's signal shapes,only on their variance/covariance properties.� Experiment design, i.e., the selection of the input u, aims at makingthe matrix �R�1 "as small as possible". Note that the same �R can beobtained for many di�erent signals u.
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1.4 The Main IngredientsThe main ingredients for the System Identi�cation problem are as follows� The data set ZN� A class of candidate model descriptions; a Model Structure.� A criterion of �t between data and models.� Routines to validate and accept resulting models.We have seen in Section 1.3 a particular model structure, the ARX-model.In fact the major problem in system identi�cation is to select a good modelstructure, and a substantial part of this article deals with various modelstructures. See Sections 3, 5, and 6, which all concern this problem. Gener-ally speaking, a model structure is a parameterized mapping from past inputsand outputs Zt�1 (cf (6)) to the space of the model outputs:ŷ(tj�) = g(�; Zt�1) (19)Here � is the �nite dimensional vector used to parameterize the mapping.Actually, the problem of �tting a given model structure to measured data ismuch simpler, and can be dealt with independently of the model structureused. We shall do so in the following section.The problem of assuring a data set with adequate information contents isthe problem of experiment design, and it will be described in Section 7.1.Model validation is both a process to discriminate between various modelstructures and the �nal quality control station, before a model is deliveredto the user. This problem is discussed in Section 7.2.2 General Parameter Estimation TechniquesIn this section we shall deal with issues that are independent of model struc-ture. Principles and algorithms for �tting models to data, as well as the11



general properties of the estimated models are all model-structure indepen-dent and equally well applicable to, say, ARMAXmodels and Neural Networkmodels.The section is organized as follows. In Section 2.1 the general principlesfor parameter estimation are outlined. Sections 2.2 and 2.3 deal with theasymptotic (in the number of observed data) properties of the models, whilealgorithms, both for on-line and o�-line use are described in Section 2.5.2.1 Fitting Models to DataIn Section 1.3 we showed one way to parameterize descriptions of dynamicalsystems. There are many other possibilities and we shall spend a fair amountof this contribution to discuss the di�erent choices and approaches. This isactually the key problem in system identi�cation. No matter how the problemis approached, the bottom line is that such a model parameterization leadsto a predictorŷ(tj�) = g(�; Zt�1) (20)that depends on the unknown parameter vector and past data Zt�1 (see (6).This predictor can be linear in y and u. This in turn contains several specialcases both in terms of black-box models and physically parameterized ones,as will be discussed in Sections 3 and 5, respectively. The predictor couldalso be of general, non-linear nature, as will be discussed in Section 6.In any case we now need a method to determine a good value of �, basedon the information in an observed, sampled data set (6). It suggests itselfthat the basic least-squares like approach (7) through (9) still is a naturalapproach, even when the predictor ŷ(tj�) is a more general function of �.A procedure with some more degrees of freedom is the following one1. From observed data and the predictor ŷ(tj�) form the sequence of pre-diction errors,"(t; �) = y(t)� ŷ(tj�); t = 1; 2; : : :N (21)12



2. Possibly �lter the prediction errors through a linear �lter L(q),"F (t; �) = L(q)"(t; �) (22)(here q denotes the shift operator, qu(t) = u(t + 1)) so as to enhanceor depress interesting or unimportant frequency bands in the signals.3. Choose a scalar valued, positive function `(�) so as to measure the \size"or \norm" of the prediction error:`("F (t; �)) (23)4. Minimize the sum of these norms:�̂N = argmin� VN(�; ZN) (24)whereVN(�; ZN) = 1N NXt=1 `("F (t; �)) (25)This procedure is natural and pragmatic { we can still think of it as \curve-�tting" between y(t) and ŷ(tj�). It also has several statistical and informationtheoretic interpretations. Most importantly, if the noise source in the system(like in (62) below) is supposed to be a sequence of independent randomvariables fe(t)g each having a probability density function fe(x), then (24)becomes the Maximum Likelihood estimate (MLE) if we chooseL(q) = 1 and `(") = � log fe(") (26)The MLE has several nice statistical features and thus gives a strong \moralsupport" for using the outlined method. Another pleasing aspect is that themethod is independent of the particular model parameterization used (al-though this will a�ect the actual minimization procedure). For example, themethod of \back propagation" often used in connection with neural networkparameterizations amounts to computing �̂N in (24) by a recursive gradientmethod. We shall deal with these aspects in Section 2.5.13



2.2 Model QualityAn essential question is, of course, what properties will the estimate resultingfrom (24) have. These will naturally depend on the properties of the datarecord ZN de�ned by (6). It is in general a di�cult problem to characterizethe quality of �̂N exactly. One normally has to be content with the asymptoticproperties of �̂N as the number of data, N , tends to in�nity.It is an important aspect of the general identi�cation method (24) that theasymptotic properties of the resulting estimate can be expressed in generalterms for arbitrary model parameterizations.The �rst basic result is the following one:�̂N ! �� as N !1 where (27)�� = argmin� E`("F (t; �)) (28)That is, as more and more data become available, the estimate converges tothat value ��, that would minimize the expected value of the \norm" of the�ltered prediction errors. This is in a sense the best possible approximation ofthe true system that is available within the model structure. The expectationE in (28) is taken with respect to all random disturbances that a�ect thedata and it also includes averaging over the input properties. This meansin particular that �� will make ŷ(tj��) a good approximation of y(t) withrespect to those aspects of the system that are enhanced by the input signalused.The second basic result is the following one: If f"(t; ��)g is approximatelywhite noise, then the covariance matrix of �̂N is approximately given byE(�̂N � ��)(�̂N � ��)T � �N [E (t) T (t)]�1 (29)where� = E"2(t; ��) (30)14



 (t) = dd� ŷ(tj�)j�=�� (31)Think of  as the sensitivity derivative of the predictor with respect to theparameters. Then (29) says that the covariance matrix for �̂N is proportionalto the inverse of the covariance matrix of this sensitivity derivative. This isa quite natural result.Note: For all these results, the expectation operator E can, under mostgeneral conditions, be replaced by the limit of the sample mean, that isE (t) T (t)$ limN!1 1N NXt=1  (t) T (t) (32)2The results (27) through (31) are general and hold for all model structures,both linear and non-linear ones, subject only to some regularity and smooth-ness conditions. They are also fairly natural, and will give the guidelines forall user choices involved in the process of identi�cation. See [Ljung, 1987] formore details around this.2.3 Measures of Model FitSome quite general expressions for the expected model �t, that are indepen-dent of the model structure, can also be developed.Let us measure the (average) �t between any model (20) and the true systemas �V (�) = Ejy(t)� ŷ(tj�)j2 (33)Here expectation E is over the data properties (i.e. expectation over \Z1"with the notation (6)). Recall that expectation also can be interpreted assample means as in (32). 15



Before we continue, let us note the very important aspect that the �t �Vwill depend, not only on the model and the true system, but also on dataproperties, like input spectra, possible feedback, etc. We shall say that the�t depends on the experimental conditions.The estimated model parameter �̂N is a random variable, because it is con-structed from observed data, that can be described as random variables. Toevaluate the model �t, we then take the expectation of �V (�̂N ) with respectto the estimation data. That gives our measureFN = E �V (�̂N ) (34)In general, the measure FN depends on a number of things:� The model structure used.� The number of data points N .� The data properties for which the �t �V is de�ned.� The properties of the data used to estimate �̂N .The rather remarkable fact is that if the two last data properties coincide,then, asymptotically in N , (see, e.g., [Ljung, 1987], Chapter 16)FN � �VN(��)(1 + dim�N ) (35)Here �� is the value that minimizes the expected criterion (28). The notationdim� means the number of estimated parameters. The result also assumesthat the criterion function `(") = k"k2, and that the model structure issuccessful in the sense that "F (t) is approximately white noise.Despite the reservations about the formal validity of (35), it carries a mostimportant conceptual message: If a model is evaluated on a data set with thesame properties as the estimation data, then the �t will not depend on the16



data properties, and it will depend on the model structure only in terms ofthe number of parameters used and of the best �t o�ered within the structure.The expression can be rewritten as follows. Let ŷ0(tjt� 1) denote the \true"one step ahead prediction of y(t), and letW (�) = Ejŷ0(tjt� 1)� ŷ(tj�)j2 (36)and let� = Ejy(t)� ŷ0(tjt� 1)j2 (37)Then � is the innovations variance, i.e., that part of y(t) that cannot be pre-dicted from the past. Moreover W (��) is the bias error, i.e. the discrepancybetween the true predictor and the best one available in the model structure.Under the same assumptions as above, (35) can be rewritten asFN � �+W (��) + �dim�N (38)The three terms constituting the model error then have the following inter-pretations� � is the unavoidable error, stemming from the fact that the outputcannot be exactly predicted, even with perfect system knowledge.� W (��) is the bias error. It depends on the model structure, and on theexperimental conditions. It will typically decrease as dim� increases.� The last term is the variance error. It is proportional to the numberof estimated parameters and inversely proportional to the number ofdata points. It does not depend on the particular model structure orthe experimental conditions.
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2.4 Model Structure SelectionThe most di�cult choice for the user is no doubt to �nd a suitable modelstructure to �t the data to. This is of course a very application-dependentproblem, and it is di�cult to give general guidelines. (Still, some generalpractical advice will be given in Section 7.)At the heart of the model structure selection process is to handle the trade-o� between bias and variance, as formalized by (38). The "best" modelstructure is the one that minimizes FN , the �t between the model and thedata for a fresh data set { one that was not used for estimating the model.Most procedures for choosing the model structures are also aiming at �ndingthis best choice.Cross ValidationA very natural and pragmatic approach is Cross Validation. This meansthat the available data set is split into two parts, estimation data, ZN1est thatis used to estimate the models:�̂N1 = argminVN1(�; ZN1est ) (39)and validation data, ZN2val for which the criterion is evaluated:F̂N1 = VN2(�̂N1 ; ZN2val ) (40)Here VN is the criterion (25). Then F̂N will be an unbiased estimate of themeasure FN , de�ned by (34), which was discussed at length in the previoussection. The procedure would the be to try out a number of model structures,and choose the one that minimizes F̂N1 .Such cross validation techniques to �nd a good model structure has an im-mediate intuitive appeal. We simply check if the candidate model is capableof "reproducing" data it hasn't yet seen. If that works well, we have somecon�dence in the model, regardless of any probabilistic framework that mightbe imposed. Such techniques are also the most commonly used ones.18



A few comments could be added. In the �rst place, one could use di�erentsplits of the original data into estimation and validation data. For example,in statistics, there is a common cross validation technique called "leave oneout". This means that the validation data set consists of one data point "ata time", but successively applied to the whole original set. In the secondplace, the test of the model on the validation data does not have to be interms of the particular criterion (40). In system identi�cation it is commonpractice to simulate (or predict several steps ahead) the model using thevalidation data, and then visually inspect the agreement between measuredand simulated (predicted) output.Estimating the Variance Contribution { Penalizing the Model Com-plexityIt is clear that the criterion (40) has to be evaluated on the validation datato be of any use { it would be strictly decreasing as a function of modelexibility if evaluated on the estimation data. In other words, the adversee�ect of the dimension of � shown in (38) would be missed. There are anumber of criteria { often derived from entirely di�erent viewpoints { thattry to capture the inuence of this variance error term. The two best knownones are Akaike's Information Theoretic Criterion, AIC, which has the form(for Gaussian disturbances)~VN(�; ZN) =  1 + 2dim�N ! 1N NXt=1 "2(t; �) (41)and Rissanen's Minimum Description Length Criterion, MDL in which dim�in the expression above is replaced by logNdim�. See [Akaike, 1974a] and[Rissanen, 1978].The criterion ~VN is then to be minimized both with respect to � and to afamily of model structures. The relation to the expression (35) for FN isobvious.
19



2.5 Algorithmic AspectsIn this section we shall discuss how to achieve the best �t between observeddata and the model, i.e. how to carry out the minimization of (24). Forsimplicity we here assume a quadratic criterion and set the pre�lter L tounity:VN(�) = 12N NXt=1 jy(t)� ŷ(tj�)j2 (42)No analytic solution to this problem is possible unless the model ŷ(tj�) islinear in �, so the minimization has to be done by some numerical searchprocedure. A classical treatment of the problem of how to minimize the sumof squares is given in [Dennis and Schnabel, 1983].Most e�cient search routines are based on iterative local search in a \down-hill" direction from the current point. We then have an iterative scheme ofthe following kind�̂(i+1) = �̂(i) � �iR�1i ĝi (43)Here �̂(i) is the parameter estimate after iteration number i. The searchscheme is thus made up of the three entities� �i step size� ĝi an estimate of the gradient V 0N(�̂(i))� Ri a matrix that modi�es the search directionIt is useful to distinguish between two di�erent minimization situations(i) O�-line or batch: The update �iR�1i g1i is based on the whole availabledata record ZN .(ii) On-line or recursive: The update is based only on data up to sample i(Zi), (typically done so that the gradient estimate ĝi is based only ondata just before sample i. 20



We shall discuss these two modes separately below. First some general as-pects will be treated.Search directionsThe basis for the local search is the gradientV 0N(�) = dVN(�)d� = � 1N NXt=1(y(t)� ŷ(tj�)) (t; �) (44)where (t; �) = @@� ŷ(tj�) (45)The gradient  is in the general case a matrix with dim � rows and dim ycolumns. It is well known that gradient search for the minimum is ine�cient,especially close to the minimum. Then it is optimal to use the Newton searchdirectionR�1(�)V 0N(�) (46)whereR(�) = V 00N(�) = d2VN(�)d�2 = 1N NXt=1  (t; �) T (t; �)+ 1N NXt=1(y(t)� ŷ(tj�)) @2@�2 ŷ(tj�) (47)The true Newton direction will thus require that the second derivative@2@�2 ŷ(tj�)be computed. Also, far from the minimum,R(�) need not be positive semidef-inite. Therefore alternative search directions are more common in practice:21



- Gradient direction. Simply takeRi = I (48)- Gauss-Newton direction. UseRi = Hi = 1N NXt=1  (t; �̂(i)) T (t; �̂(i)) (49)- Levenberg-Marquard direction. UseRi = Hi + �I (50)where Hi is de�ned by (49).- Conjugate gradient direction. Construct the Newton direction from a se-quence of gradient estimates. Loosely, think of V 00N as constructed bydi�erence approximation of d gradients. The direction (46) is howeverconstructed directly, without explicitly forming and inverting V 00.It is generally considered, [Dennis and Schnabel, 1983], that the Gauss-Newtonsearch direction is to be preferred. For ill-conditioned problems the Levenberg-Marquard modi�cation is recommended.On-line algorithmsThe expressions (44) and (47) for the Gauss-Newton search clearly assumethat the whole data set ZN is available during the iterations. If the applica-tion is of an o�-line character, i.e., the model ĝN is not required during thedata acquisition, this is also the most natural approach.However, many adaptive situations require on-line (or recursive) algorithms,where the data are processed as they are measured. (Such algorithms arein Neural Network contexts often also used in o�-line situations.) Then themeasured data record is concatenated with itself several times to create a(very) long record that is fed into the on-line algorithm. We may refer to[Ljung and S�oderstr�om, 1983] as a general reference for recursive parameter22



estimation algorithms. In [Solbrand et al., 1985] the use of such algorithmsin the o�-line case is discussed.It is natural to consider the following algorithm as the basic one:�̂(t) = �̂(t� 1) + �tR�1t  (t; �̂(t� 1))"(t; �̂(t� 1)) (51)"(t; �) = y(t)� ŷ(tj�) (52)Rt = Rt�1 + �t[ (t; �̂(t� 1)) T (t; �̂(t� 1))� Rt�1] (53)The reason is that if ŷ(tj�) is linear in �, then (51) { (53), with �t = 1=t,provides the analytical solution to the minimization problem (42). This alsomeans that this is a natural algorithm close to the minimum, where a secondorder expansion of the criterion is a good approximation. In fact, it is shownin [Ljung and S�oderstr�om, 1983], that (51) { (53) in general gives an estimate�̂(t) with the same (\optimal") statistical, asymptotic properties as the trueminimum to (42).It should be mentioned that the quantities ŷ(tj�̂(t � 1)) and  (t; �̂(t � 1))would normally (except in the linear regression case) require the whole datarecord to be computed. This would violate the recursiveness of the algo-rithm. In practical implementations these quantities are therefore replacedby recursively computed approximations. The idea behind these approxima-tions is to use the de�ning equation for ŷ(tj�) and  (t; �) (which typically arerecursive equations), and replace any appearance of � with its latest availableestimate. See [Ljung and S�oderstr�om, 1983] for more details.Some averaged variants of (51) { (53) have also been discussed:^̂�(t) = ^̂�(t� 1) + �tR�1t  (t; �̂(t� 1))"(t; �̂(t� 1)) (54)�̂(t) = �̂(t� 1) + �t[^̂�(t)� �̂(t� 1)] (55)The basic algorithm (51) { (53) then corresponds to �t = 1. Using �t < 1gives a so called \accelerated convergence" algorithm. It was introduced23



by [Polyak and Juditsky, 1992] and has then been extensively discussed by[Kushner and Yang, 1993] and others. The remarkable thing with this aver-aging is that we achieve the same asymptotic statistical properties of �̂(t) by(54) { (55) with Rt = I (gradient search) as by (51) { (53) if�t = 1=t�t >> �t �t ! 0It is thus an interesting alternative to (51) { (53), in particular if dim � islarge so Rt is a big matrix.Local MinimaA fundamental problem with minimization tasks like (42) is that VN(�) mayhave several or many local (non-global) minima, where local search algo-rithms may get caught. There is no easy solution to this problem. It isusually well worth the e�ort to �nd a good initial value �(0) where to startthe iterations. Other than that, only various global search strategies areleft, such as random search, random restarts, simulated annealing, and thegenetic algorithm.3 Linear Black Box Systems3.1 Linear System Descriptions in GeneralA linear System with Additive DisturbancesA linear system with additive disturbances v(t) can be described byy(t) = G(q)u(t) + v(t) (56)24



Here u(t) is the input signal, and G(q) is the transfer function from input tooutput y(t). The symbol q is the shift operator, so (56) should be interpretedas y(t) = 1Xk=0 gku(t� k) + v(t) = ( 1Xk=0 gkq�k)u(t) + v(t) (57)The disturbance v(t) can in general terms be characterized by its spectrum,which is a description of its frequency content. It is often more convenientto describe v(t) as being (thought of as) obtained by �ltering a white noisesource e(t) through a linear �lter H(q):v(t) = H(q)e(t) (58)This is, from a linear identi�cation perspective, equivalent to describing v(t)as a signal with spectrum�v(!) = �jH(ei!)j2 (59)where � is the variance of the noise source e(t). We shall assume that H(q)is normalized to be monic, i.e.,H(q) = 1 + 1Xk=1hkq�k (60)Putting all of this together, we arrive at the standard linear system descrip-tion y(t) = G(q)u(t) +H(q)e(t) (61)Parameterized Linear ModelsNow, if the transfer functions G and H in (61) are not known, we wouldintroduce parameters � in their description that reect our lack of knowledge.25



The exact way of doing this is the topic of the present section as well as ofSection 5.In any case the resulting, parameterized model will be described asy(t) = G(q; �)u(t) +H(q; �)e(t) (62)The parameters � can then be estimated from data using the general proce-dures described in Chapter 2.Predictors for Linear ModelsGiven a system description (62) and input-output data up to time t� 1,y(s); u(s) s � t� 1 (63)how shall we predict the next output value y(t)?In the general case of (62) the prediction can be deduced in the followingway: Divide (62) by H(q; �):H�1(q; �)y(t) = H�1(q; �)G(q; �)u(t) + e(t)or y(t) = [1�H�1(q; �)]y(t) +H�1(q; �)G(q; �)u(t) + e(t) (64)In view of the normalization (60) we �nd that1�H�1(q; �) = H(q; �)� 1H(q; �) = 1H(q; �) 1Xk=1 hkq�kThe expression [1�H�1(q; �)]y(t) thus only contains old values of y(s); s �t� 1. The right side of (64) is thus known at time t� 1, with the exceptionof e(t). The prediction of y(t) is simply obtained from (64) by deleting e(t):ŷ(tj�) = [1�H�1(q; �)]y(t) +H�1(q; �)G(q; �)u(t) (65)26



This is a general expression for how ready-made models predict the nextvalue of the output, given old values of y and u.A Characterization of the Limiting Model in a General Class ofLinear ModelsLet us apply the general limit result (27)-(28) to the linear model structure(62) (or (65)). If we choose a quadratic criterion `(") = "2 (in the scalaroutput case) then this result tells us, in the time domain, that the limitingparameter estimate is the one that minimizes the �ltered prediction errorvariance (for the input used during the experiment.) Suppose that the dataactually have been generated byy(t) = G0(q)u(t) + v(t) (66)Let �u(!) be the input spectrum and �v(!) be the spectrum for the additivedisturbance v. Then the �ltered prediction error can be written"F (t; �) = L(q)H(q; �)[y(t)�G(q; �)u(t)] =L(q)H(q; �)[(G0(q)�G(q; �))u(t) + v(t)] (67)By Parseval's relation, the prediction error variance can also be written as anintegral over the spectrum of the prediction error. This spectrum, in turn,is directly obtained from (67), so the limit estimate �� in (28) can also bede�ned as�� = argmin� "Z ��� jG0(ei!)�G(ei!; �)j2�u(!)jL(ei!)j2jH(ei!; �)j2 d!+ Z ��� �v(!)jL(ei!)j2=jH(ei!; �)j2d!� (68)If the noise model H(q; �) = H�(q) does not depend on � (as in the outputerror model (75)) the expression (68) thus shows that the resulting model27



G(ei!; ��) will give that frequency function in the model set that is closest tothe true one, in a quadratic frequency norm with weighting functionQ(!) = �u(!)jL(ei!)j2=jH�(ei!)j2 (69)This shows clearly that the �t can be a�ected by the choice of pre�lter L,the input spectrum �u and the noise model H�.3.2 Linear, Ready-made ModelsSometimes we are faced with systems or subsystems that cannot be modeledbased on physical insights. The reason may be that the function of the systemor its construction is unknown or that it would be too complicated to sortout the physical relationships. It is then possible to use standard models,which by experience are known to be able to handle a wide range of di�erentsystem dynamics. Linear systems constitute the most common class of suchstandard models. From a modeling point of view these models thus serve asready-made models: tell us the size (model order), and it should be possibleto �nd something that �ts (to data).A Family of Transfer Function ModelsA very natural approach is to describe G and H in (62) as rational transferfunctions in the shift (delay) operator with unknown numerator and denom-inator polynomials.We would then haveG(q; �) = B(q)F (q) = b1q�nk + b2q�nk�1 + � � �+ bnbq�nk�nb+11 + f1q�1 + � � �+ fnfq�nf ; (70)Then �(t) = G(q; �)u(t) (71)28



is a shorthand notation for the relationship�(t) + f1�(t� 1) + � � �+ fnf�(t� nf)= b1u(t� nk) + � � �+ bnb(t� (nb + nk � 1)) (72)There is also a time delay of nk samples. We assume assume, for simplicity,that the sampling interval T is one time unit.In the same way the disturbance transfer function can be writtenH(q; �) = C(q)D(q) = 1 + c1q�1 + � � �+ cncq�nc1 + d1q�1 + � � �+ dndq�nd (73)The parameter vector � thus contains the coe�cients bi; ci; di; and fi ofthe transfer functions. This ready-made model is thus described by �vestructural parameters: nb; nc; nd; nf; and nk. When these have been chosen,it remains to adjust the parameters bi; ci; di; and fi to data. This is done withthe methods of Section 2. The ready-made model (70)-(73) givesy(t) = B(q)F (q)u(t) + C(q)D(q)e(t) (74)and is known as the Box-Jenkins (BJ) model, after the statisticians G. E. P.Box and G. M. Jenkins.An important special case is when the properties of the disturbance signalsare not modeled, and the noise model H(q) is chosen to be H(q) � 1; that is,nc = nd = 0. This special case is known as an output error (OE) model sincethe noise source e(t) will then be the di�erence (error) between the actualoutput and the noise-free output:y(t) = B(q)F (q)u(t) + e(t) (75)A common variant is to use the same denominator for G and H:F (q) = D(q) = A(q) = 1 + a1q�1 + � � �+ anaa�na (76)29



Multiplying both sides of (74) by A(q) then givesA(q)y(t) = B(q)u(t) + C(q)e(t) (77)This ready-made model is known as the ARMAX model. The name is derivedfrom the fact that A(q)y(t) represents an AutoRegression and C(q)e(t) aMoving Average of white noise, while B(q)u(t) represents an eXtra input (orwith econometric terminology, an eXogenous variable).Physically, the di�erence between ARMAX and BJ models is that the noiseand input are subjected to the same dynamics (same poles) in the ARMAXcase. This is reasonable if the dominating disturbances enter early in theprocess (together with the input). Consider for example an airplane wherethe disturbances from wind gusts give rise to the same type of forces on theairplane as the deections of the control surfaces.Finally, we have the special case of (77) that C(q) � 1; that is, nc = 0A(q)y(t) = B(q)u(t) + e(t) (78)which with the same terminology is called an ARX model, and which wediscussed at length in Section 1.3.Figure 1 shows the most common model structures.To use these ready-made models, decide on the orders na; nb; nc; nd, nf , andnk and let the computer pick the best model in the class thus de�ned. Theobtained model is then scrutinized, and it might be found that other ordermust also be tested.A relevant question is how to use the freedom that the di�erent model struc-tures give. Each of the BJ, OE, ARMAX, and ARX structures o�er theirown advantages, and we will discuss them in Section 7.2.PredictionStarting with model (74), it is possible to predict what the output y(t) willbe, based on measurements of u(s); y(s) s � t�1, using the general formula30
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(65) It is easiest to calculate the prediction for the OE-case, H(q; �) � 1,when we obtain the modely(t) = G(q; �)u(t) + e(t)with the natural prediction (1�H�1 = 0)ŷ(tj�) = G(q; �)u(t) (79)From the ARX case (78) we obtainy(t) = �a1y(t� 1)� � � � � anay(t� na)+b1u(t� nk) + � � �+ bnbu(t� nk � nb + 1) + e(t) (80)and the prediction (delete e(t)!)ŷ(tj�) = �a1y(t� 1)� � � � � anay(t� na)+b1u(t� nk) + � � �+ bnbu(t� nk � nb + 1) (81)Note the di�erence between (79) and (81). In the OE model the predictionis based entirely on the input fu(t)g, whereas the ARX model also uses oldvalues of the output.Linear RegressionBoth tailor-made and ready-made models describe how the predicted valueof y(t) depends on old values of y and u and on the parameters �. We denotethis prediction by ŷ(tj�)See (65). In general this can be a rather complicated function of �. Theestimation work is considerably easier if the prediction is a linear function of�: ŷ(tj�) = �T'(t) (82)32



Here � is a column vector that contains the unknown parameters, while '(t)is a column vector formed by old inputs and outputs. Such a model structureis called a linear regression. We discussed such models in Section 1.3, andnoted that the ARX model (78) is one common model of the linear regressiontype. Linear regression models can also be obtained in several other ways.See Example 2.4 Special Estimation Techniques for LinearBlack Box ModelsAn important feature of a linear, time invariant system is that it is entirelycharacterized by its impulse response. So if we know the system's responseto an impulse, we will also know its response to any input. Equivalently,we could study the frequency response, which is the Fourier transform of theimpulse response.In this section we shall consider estimation methods for linear systems, thatdo not use particular model parameterizations. First, in Section 4.1, we shallconsider direct methods to determine the impulse response and the frequencyresponse, by simply applying the de�nitions of these concepts.In section 4.2 methods for estimating the impulse response by correlationanalysis will be described, and in Section 4.3 spectral analysis for frequencyfunction estimation will be discussed. Finally, in Section 4.4 a recent methodto estimate general linear systems (of given order, by unspeci�ed structure)will be described.4.1 Transient and Frequency AnalysisTransient AnalysisThe �rst step in modeling is to decide which quantities and variables areimportant to describe what happens in the system. A simple and commonkind of experiment that shows how and in what time span various variables33



a�ect each other is called step-response analysis or transient analysis. Insuch experiments the inputs are varied (typically one at a time) as a step:u(t) = u0, t < t0; u(t) = u1, t � t0. The other measurable variables in thesystem are recorded during this time. We thus study the step response of thesystem. An alternative would be to study the impulse response of the systemby letting the input be a pulse of short duration. From such measurements,information of the following nature can be found:1. The variables a�ected by the input in question. This makes it easierto draw block diagrams for the system and to decide which inuencescan be neglected.2. The time constants of the system. This also allows us to decide whichrelationships in the model can be described as static (that is, they havesigni�cantly faster time constants than the time scale we are workingwith.3. The characteristic (oscillatory, poorly damped, monotone, and the like)of the step responses, as well as the levels of static gains. Such in-formation is useful when studying the behavior of the �nal model insimulation. Good agreement with the measured step responses shouldgive a certain con�dence in the model.Frequency AnalysisIf a linear system has the transfer function G(q) and the input isu(t) = u0 cos!kT; (k � 1)T � t � kT (83)then the output after possible transients have faded away will bey(t) = y0 cos(!t+ '); for t = T; 2T; 3T; : : : (84)wherey0 = jG(ei!T )j � u0 (85)' = argG(ei!T ) (86)34



If the system is driven by the input (83) for a certain u0 and !1 and wemeasure y0 and ' from the output signal, it is possible to determine thecomplex number G(ei!1T ) using (85){(86). By repeating this procedure for anumber of di�erent !, we can get a good estimate of the frequency functionG(ei!T ). This method is called frequency analysis. Sometimes it is possibleto see or measure u0, y0, and ' directly from graphs of the input and outputsignals. Most of the time, however, there will be noise and irregularities thatmake it di�cult to determine ' directly. A suitable procedure is then tocorrelate the output with cos!t and sin!t.4.2 Estimating Impulse Responses by Correlation Anal-ysisIt is not necessary to use an impulse as input to estimate the impulse responseof a system directly. That can also be done by correlation techniques. Toexplain how these work, let us �rst de�ne correlation functions.The cross covariance function between two signals y and u is de�ned asthe covariance between the random variables y(t) and u(t� �), viewed as afunction of the time di�erence � :Ryu(�) = E(y(t)� Ey(t))(u(t� �)� Eu(t� �)) (87)It is implicitly assumed here that the indicated expectation does not dependon absolute time t. This is the same as saying that the signals are (weakly)stationary.Just as in the case (32), expectation can be replaced by sample means:my = limN!1 1N NXt=1 y(t) (88)Ryu(�) = limN!1 1N NXt=1(y(t)�my)(u(t� �)�mu) (89)As soon as we use the term covariance function, there is always an implied35



assumption that the involved signals are such that either (87) or (89) is wellde�ned.The cross correlation signal between a signal u and itself, i.e. Ruu(�) = Ru(�)is called the (auto) covariance function of the signal.We shall say that two signals are uncorrelated if their cross covariance func-tion is identically equal to zero.Let us consider the general linear model (56), and assume that the input uand the noise v are uncorrelated:y(t) = 1Xk=0 gku(t� k) + v(t) (90)The cross covariance function between u and y is thenRyu(�) = Ey(t)u(t� �) = 1Xk=0 gkEu(t� k)u(t� �)+ Ev(t)u(t� �) = 1Xk=0 gkRu(� � k) (91)If the input is white noise,Ru(�) = (�; � = 00; � 6= 0we obtainRyu(�) = �g� (92)The cross covariance function Ryu(�) will thus be proportional to the impulseresponse. Of course, this function is not known, but it can be estimated in anobvious way from observed inputs and outputs as the corresponding samplemean:R̂Nyu(�) = 1N NXt=1 y(t)u(t� �) (93)36



In this way we also obtain an estimate of the impulse response:ĝN� = 1�R̂Nyu(�) (94)If we cannot choose the input ourselves, and it is non white, it would bepossible to estimate its covariance function as R̂Nu (�), analogous to (93), andthen solve for gk from (91) where Ru and Ruy have been replaced by thecorresponding estimates. However, a better and more common way is thefollowing: First note that if both input and output are �ltered through thesame �lteryF (t) = L(q)y(t) uF (t) = L(q)u(t) (95)then the �ltered signals will be related by the same impulse response as in(90): yF (t) = 1Xk=1 gkuF (t� k) + vF (t) (96)Now, for any given input u(t) the the process, we can choose the �lter L sothat the signal fuF (t)g will be as white as possible. Such a �lter is called awhitening �lter. It is often computed by describing u(t) as an AR process(This is an ARX model without an input, cf Section 1.3): A(q)u(t) = e(t).The polynomial A(q) = L(q) can then be estimated using the least squaresmethod. (See Section 1.3). We can now use the estimate (94) applied to the�ltered signals.4.3 Estimating the Frequency Response by SpectralAnalysisDe�nitionsThe cross spectrum between two (stationary) signals u(t) and y(t) is de�nedas the Fourier transform of their cross covariance function, provided this37



exists:�yu(!) = 1X�=�1Ryu(�)e�i!� (97)where Ryu(�) is de�ned by (87) or (89). The (auto) spectrum �u(!) of asignal u is de�ned as �uu(!), i.e. as its cross spectrum with itself.The spectrum describes the frequency contents of the signal. The connectionto more explicit Fourier techniques is evident by the following relationship�u(!) = limN!1 1N jUN(!)j2 (98)where UN is the discrete time Fourier transformUN(!) = NXt=1 u(t)ei!t (99)The relationship (98) is shown, e.g. in [Ljung and Glad, 1994].Consider now the general linear model (56):y(t) = G(q)u(t) + v(t) (100)It is straightforward to show that the relationships between the spectra andcross spectra of y and u (provided u and v are uncorrelated) is given by�yu(!) = G(ei!)�u(!) (101)�y(!) = jG(ei!)j2�u(!) + �v(!) (102)It is easy to see how the transfer function G(ei!) and the noise spectrum�v(!) can be estimated using these expressions, if only we have a method toestimate cross spectra. 38



Estimation of SpectraThe spectrum is de�ned as the Fourier transform of the correlation function.A natural idea would then be to take the transform of the estimate R̂Nyu(�)in (93). That will not work in most cases, though. The reason could bedescribed as follows: The estimate R̂Nyu(�) is not reliable for large � , since itis based on only a few observations. These "bad" estimates are mixed withgood ones in the Fourier transform, thus creating an overall bad estimate.It is better to introduce a weighting, so that correlation estimates for largelags � carry a smaller weight:�̂Nyu(!) = X`=� R̂Nyu(`) � w(`)e�i`! (103)This spectral estimation method is known as the The Blackman-Tukey ap-proach. Here w(`) is a window function that decreases with j� j. This func-tion controls the trade-o� between frequency resolution and variance of theestimate. A function that gives signi�cant weights to the correlation at largelags will be able to provide �ner frequency details (a longer time span iscovered). At the same time it will have to use "bad" estimates, so the sta-tistical quality (the variance) is poorer. We shall return to this trade-o� ina moment. How should we choose the shape of the window function w(`)?There is no optimal solution to this problem, but the most common windowused in spectral analysis is the Hamming window:w(k) = 12(1 + cos �k ) jkj < w(k) = 0 jkj �  (104)From the spectral estimates �u, �y and �yu obtained in this way, we cannow use (101) to obtain a natural estimate of the frequency function G(ei!):ĜN(ei!) = �̂Nyu(!)�̂Nu (!) (105)
39



Furthermore, the disturbance spectrum can be estimated from (102) as�̂Nv (!) = �̂Ny (!)� j�̂Nyu(!)j2�̂Nu (!) (106)To compute these estimates, the following steps are performed:Algorithm SPA (107)1. Collect data y(k), u(k) k = 1; : : : ; N .2. Subtract the corresponding sample means form the data. This willavoid bad estimates at very low frequencies.3. Choose the width of the lag window w(k).4. Compute R̂Ny (k), R̂Nu (k), and R̂Nyu(k) for jkj �  according to (93).5. Form the spectral estimates �̂Ny (!), �̂Nu (!), and �̂Nyu(!) according to(103) and analogous expressions.6. Form (105) and possibly also (106).The user only has to choose . A good value for systems without sharpresonances is  = 20 to 30. Larger values of  may be required for systemswith narrow resonances.Quality of the EstimatesThe estimates ĜN and �̂Nw are formed entirely from estimates of spectra andcross spectra. Their properties will therefore be inherited from the propertiesof the spectral estimates. For the Hamming window with width , it can beshown that the frequency resolution will be about�p2 radians/time unit (108)40



This means that details in the true frequency function that are �ner thanthis expression will be smeared out in the estimate. It is also possible toshow that the estimate's variances satisfyVar ĜN(i!) � 0:7 � N � �v(!)�u(!) (109)and Var �̂Nv (!) � 0:7 � N � �2v(!) (110)[Variance" here refers to taking expectation over the noise sequence v(t).]Note that the relative variance in (109) typically increases dramatically as! tends to the Nyquist frequency. The reason is that jG(i!)j typically de-cays rapidly, while the noise-to-signal ratio �v(!)=�u(!) has a tendency toincrease as ! increases. In a Bode diagram the estimates will thus show con-siderable uctuations at high frequencies. Moreover, the constant frequencyresolution (108) will look thinner and thinner at higher frequencies in a Bodediagram due to the logarithmic frequency scale.See [Ljung and Glad, 1994] for a more detailed discussion.Choice of Window SizeThe choice of  is a pure trade-o� between frequency resolution and variance(variability). For a spectrum with narrow resonance peaks it is thus necessaryto choose a large value of  and accept a higher variance. For a more atspectrum, smaller values of  will do well. In practice a number of di�erentvalues of  are tried out. Often we start with a small value of  and increaseit successively until an estimate is found that balances the trade-o� betweenfrequency resolution (true details) and variance (random uctuations). Atypical value for spectra without narrow resonances is = 20{30.
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4.4 Subspace Estimation Techniques for State SpaceModelsA linear system can always be represented in state space form:x(t + 1) = Ax(t) +Bu(t) + w(t)y(t) = Cx(t) +Du(t) + e(t) (111)We assume that we have no insight into the particular structure, and wewould just estimate any matrices A;B;C; andD, that give a good descriptionof the input-output behavior of the system. This is not without problems,among other things because there are an in�nite number of such matricesthat describe the same system (the similarity transforms). The coordinatebasis of the state-space realization thus needs to be �xed.Let us for a moment assume that not only are u and y measured, but alsothe sequence of state vectors x. This would, by the way, �x the state-spacerealization coordinate basis. Now, with known u; y and x, the model (111)becomes a linear regression: the unknown parameters, all of the matrix en-tries in all the matrices, mix with measured signals in linear combinations.To see this clearly, letY (t) = � x(t+ 1)y(t) �� = �A BC D ��(t) = � x(t)u(t)�E(t) = �w(t)e(t) �Then, (111) can be rewritten asY (t) = ��(t) + E(t) (112)From this all the matrix elements in � can be estimated by the simple leastsquares method, as described in Section 1.3. The covariance matrix for E(t)42



can also be estimated easily as the sample sum of the model residuals. Thatwill give the covariance matrices for w and e, as well as the cross covariancematrix between w and e. These matrices will, among other things, allow usto compute the Kalman �lter for (111). Note that all of the above holdswithout changes for multivariable systems, i.e., when the output and inputsignals are vectors.The only remaining problem is where to get the state vector sequence xfrom. It has long been known, e.g., [Rissanen, 1974], [Akaike, 1974b], thatall state vectors x(t) that can be reconstructed from input-output data infact are linear combinations of the components of the n k-step ahead outputpredictorsŷ(t+ kjt); k = f1; 2; : : : ; ng (113)where n is the model order (the dimension of x). See also Appendix 4.A in[Ljung, 1987]. We could then form these predictors, and select a basis amongtheir components:x(t) = L0B@ ŷ(t+ 1jt)...ŷ(t+ njt)1CA (114)The choice of L will determine the basis for the state-space realization, andis done in such a way that it is well conditioned. The predictor ŷ(t + kjt) isa linear function of u(s); y(s); 1 � s � t and can e�ciently be determinedby linear projections directly on the input output data. (There is one com-plication in that u(t+ 1); : : : ; u(t + k) should not be predicted, even if theya�ect y(t+ k).)What we have described now is the subspace projection approach to es-timating the matrices of the state-space model (111), including the ba-sis for the representation and the noise covariance matrices. There are anumber of variants of this approach. See among several references, e.g.[Overschee and DeMoor, 1994], [Larimore, 1983]The approach gives very useful algorithms for model estimation, and is par-ticularly well suited for multivariable systems. The algorithms also allow43



numerically very reliable implementations. At present, the asymptotic prop-erties of the methods are not fully investigated, and the general results quotedin Section 2.2 are not directly applicable. Experience has shown, however,that con�dence intervals computed according to the general asymptotic the-ory, are good approximations. One may also use the estimates obtained bya subspace method as initial conditions for minimizing the prediction errorcriterion (24).5 Physically parameterized modelsSo far we have treated the parameters � only as vehicles to give reasonableexibility to the transfer functions in the general linear model (62). Thismodel can also be arrived at from other considerations.Consider a continuous time state space model_x(t) = A(�)x(t) +B(�)u(t) (115a)y(t) = C(�)x(t) + v(t) (115b)Here x(t) is the state vector and typically consists of physical variables (suchas positions and velocities etc). The state space matrices A; B and C areparameterized by the parameter vector �, reecting the physical insight wehave into the process. The parameters could be physical constants (resis-tance, heat transfer coe�cients, aerodynamical derivatives etc) whose valuesare not known. They could also reect other types of insights into the sys-tem's properties.Example 8.4 An electric motorConsider an electric motor with the input u being the applied voltage and theoutput y being the angular position of the motor shaft.A �rst, but reasonable approximation of the motor's dynamics is as a �rst44



order system from voltage to angular velocity, followed by an integrator:G(s) = bs(s+ a)If we select the state variablesx(t) = � y(t)_y(t)�we obtain the state space form_x = � 0 10 �a� x+ � 0b � uy = ( 1 0 )x + v (116)where v denotes disturbances and noise. In this case we thus have� = � ab �A(�) = � 0 10 �a� B(�) = � 0b �C = ( 1 0 ) (117)The parameterization reects our insight that the system contains an integra-tion, but is in this case not directly derived from detailed physical modeling.Basic physical laws would in this case have given us how � depends on phys-ical constants, such as resistance of the wiring, amount of inertia, frictioncoe�cients and magnetic �eld constants. 2Now, how do we �t a continuous-time model (115a) to sampled observeddata? If the input u(t) has been piecewise constant over the sampling intervalu(t) = u(kT ) kT � t < (k + 1)Tthen the states, inputs and outputs at the sampling instants will be repre-sented by the discrete time modelx((k + 1)T ) = �A(�)x(kT ) + �B(�)u(kT )y(kT ) = C(�)x(kT ) + v(kT ) (118)45



where �A(�) = eA(�)T ; �B(�) = Z T0 eA(�)�B(�)d� (119)This follows from solving (115) over one sampling period. We could alsofurther model the added noise term v(kT ) and represent the system in theinnovations form�x((k + 1)T ) = �A(�)�x(kT ) + �B(�)u(kT ) + �K(�)e(kT )y(kT ) = C(�)�x(kT ) + e(kT ) (120)where fe(kT )g is white noise. The step from (118) to (120) is really a stan-dard Kalman �lter step: �x will be the one-step ahead predicted Kalmanstates. A pragmatic way to think about it is as follows: In (118) the termv(kT ) may not be white noise. If it is colored we may separate out that partof v(kT ) that cannot be predicted from past values. Denote this part bye(kT ): it will be the innovation. The other part of v(kT ) { the one that canbe predicted { can then be described as a combination of earlier innovations,e(`T ) ` < k. Its e�ect on y(kT ) can then be described via the states, bychanging them from x to �x, where �x contains additional states associatedwith getting v(kT ) from e(`T ); k � `.Now (120) can be written in input { output from as (let T = 1)y(t) = G(q; �)u(t) +H(q; �)e(t) (121)with G(q; �) = C(�)(qI � �A(�))�1 �B(�)H(q; �) = I + C(�)(qI � �A(�))�1 �K(�) (122)We are thus back at the basic linear model (62). The parameterization of Gand H in terms of � is however more complicated than the ones we discussedin Section 3.2.The general estimation techniques, model properties (including the charac-terization (68)), algorithms, etc., apply exactly as described in Section 2.46



From these examples it is also quite clear that non-linear models with un-known parameters can be approached in the same way. We would thentypically arrive at a a structure_x(t) = f(x(t); u(t); �)y(t) = h(x(t); u(t); �) + v(t) (123)In this model, all noise e�ects are collected as additive output disturbancesv(t) which is a restriction, but also a very helpful simpli�cation. If we de�neŷ(tj�) as the simulated output response to (123), for a given input, ignor-ing the noise v(t), everything that was said in Section 2 about parameterestimation, model properties, etc. is still applicable.6 Non-linear Black Box ModelsIn this section we shall describe the basic ideas behind model structures thathave the capability to cover any non-linear mapping from past data to thepredicted value of y(t). Recall that we de�ned a general model structure asa parameterized mapping in (19):ŷ(tj�) = g(�; Zt�1) (124)We shall consequently allow quite general non-linear mappings g. Thissection will deal with some general principles for how to construct suchmappings, and will cover Arti�cial Neural Networks as a special case. See[Sj�oberg et al., 1995] and [Juditsky et al., 1995] for recent and more compre-hensive surveys.6.1 Non-Linear Black-Box StructuresNow, the model structure family (124) is really too general, and it turns outto be useful to write g as a concatenation of two mappings: one that takesthe increasing number of past observations Zt�1 and maps them into a �nite47



dimensional vector '(t) of �xed dimension and one that takes this vector tothe space of the outputs:ŷ(tj�) = g(�; Zt�1) = g('(t); �) (125)where'(t) = '(Zt�1) (126)Let the dimension of ' be d. As before, we shall call this vector the regressionvector and its components will be referred to as the regressors. We alsoallow the more general case that the formation of the regressors is itselfparameterized:'(t) = '(Zt�1; �) (127)which we for short write '(t; �). For simplicity, the extra argument � willhowever be used explicitly only when essential for the discussion.The choice of the non-linear mapping in (124) has thus been reduced to twopartial problems for dynamical systems:1. How to choose the non-linear mapping g(') from the regressor spaceto the output space (i.e., from Rd to Rp).2. How to choose the regressors '(t) from past inputs and outputs.The second problem is the same for all dynamical systems, and it turns outthat the most useful choices of regression vectors are to let them contain pastinputs and outputs, and possibly also past predicted/simulated outputs. Theregression vector will thus be of the character (4). We now turn to the �rstproblem.
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6.2 Non-Linear Mappings: PossibilitiesFunction Expansions and Basis FunctionsThe non-linear mappingg('; �) (128)goes from Rd to Rp for any given �. At this point it does not matter how theregression vector ' is constructed. It is just a vector that lives in Rd.It is natural to think of the parameterized function family as function ex-pansions:g('; �) =X �(k)gk(') (129)where gk are the basis functions and the coe�cients �(k) are the \coordinates"of g in the chosen basis.Now, the only remaining question is: How to choose the basis functionsgk? Depending on the support of gk (i.e. the area in Rd for which gk(')is (practically) non-zero) we shall distinguish between three types of basisfunctions� Global basis functions� Semi-global or ridge-type basis functions� Local basis functionsA typical and classical global basis function expansion would then be theTaylor series, or polynomial expansion, where gk would contain multinomialsin the components of ' of total degree k. Fourier series are also relevant ex-amples. We shall however not discuss global basis functions here any further.Experience has indicated that they are inferior to the semi-local and localones in typical practical applications.49



Local Basis FunctionsLocal basis functions have their support only in some neighborhood of a givenpoint. Think (in the case of p=1) of the indicator function for the unit cube:�(') = 1 if j'kj � 1 8k ; and 0 otherwise (130)By scaling the cube and placing it at di�erent locations we obtain the func-tions gk(') = �(�k � ('� �k)) (131)By allowing � to be a vector of the same dimension as ' and interpreting themultiplication � as component-wise multiplication (like \:�" in MATLAB) wemay also reshape the cube to be any parallelepiped. The parameters � arethus scaling or dilation parameters while � determine location or translation.For notational convenience we writegk(') = �(�k � ('� �k)) = �(�k � ') (132)where �k = [�k; �k � �k]In the last equality, with some abuse of notation, we expanded the regressionvector ' to contain some \1":s. This is to stress the point that the argumentof the basic function � is bilinear in the scale and location parameters �k andin the regression vector '. The notation �k � ' indicates this.This choice of gk in (129) gives functions that are piecewise constant overareas in Rd that can be chosen arbitrarily small by proper choice of thescaling parameters. It should be fairly obvious that such functions gk canapproximate any reasonable function arbitrarily well.Now it is also reasonable that the same will be true for any other localizedfunction, such as the Gaussian bell function:�(') = e�j'j2 (133)50



Ridge-type Basis FunctionsA useful alternative is to let the basis functions be local in one direction ofthe '-space and global in the others. This is achieved quite analogously to(131) as follows. Let �(x) be a local function from R to R. Then formgk(') = �(�Tk ('� �k)) = �(�Tk'+ k) = �(�k � ') (134)where the scalar k = ��Tk �k, and�k = [�k; k]Note the di�erence with (131)! The scalar product �Tk' is constant in thesubspace of Rd that is perpendicular to the scaling vector �k. Hence thefunction gk(') varies like � in a direction parallel to �k and is constantacross this direction. This motivates the term semi-global or ridge-type forthis choice of functions.As in (131) we expanded in the last equality in (134) the vector ' with thevalue "1", again just to emphasize that the argument of the fundamentalbasis function � is bilinear in � and '.Connection to \Named Structures"Here we briey review some popular structures, other structures related to in-terpolation techniques are discussed in [Sj�oberg et al., 1995, Juditsky et al., 1995].Wavelets The local approach corresponding to (129,131) has direct con-nections to wavelet networks and wavelet transforms. The exact relationshipsare discussed in [Sj�oberg et al., 1995]. Loosely, we note that via the dilationparameters in �k we can work with di�erent scales simultaneously to pickup both local and not-so-local variations. With appropriate translations anddilations of a single suitably chosen function � (the \mother wavelet"), wecan make the expansion (129) orthonormal. This is discussed extensively in[Juditsky et al., 1995]. 51



Wavelet and Radial Basis Networks. The choice (133) without any or-thogonalization is found in both wavelet networks, [Zhang and Benveniste, 1992]and radial basis neural networks [Poggio and Girosi, 1990].Neural Networks The ridge choice (134) with�(x) = 11 + e�xgives a much-used neural network structure, viz. the one hidden layer feed-forward sigmoidal net.Hinging Hyperplanes If instead of using the sigmoid � function we choose\V-shaped" functions (in the form of a higher-dimensional \open book")Breiman's hinging hyperplane structure is obtained, [Breiman, 1993]. Hing-ing hyperplanes model structures [Breiman, 1993] have the formg(x) = maxn�+x + + ; ��x + �o org(x) = minn�+x + + ; ��x + �o :It can be written in a di�erent way:g(x) = 12[(�+ + ��)x+ + + �]� 12 j(�+ � ��)x+ + � �j :Thus a hinge is the superposition of a linear map and a semi-global function.Therefore, we consider hinge functions as semi-global or ridge-type, thoughit is not in strict accordance with our de�nition.Nearest Neighbors or Interpolation By selecting � as in (130) and thelocation and scale vector �k in the structure (131), such that exactly oneobservation falls into each \cube", the nearest neighbor model is obtained :just load the input-output record into a table, and, for a given ', pick thepair (by; b') for b' closest to the given ', by is the desired output estimate.If one replaces (130) by a smoother function and allow some overlappingof the basis functions, we get interpolation type techniques such as kernelestimators. 52



Fuzzy Models Also so called fuzzy models based on fuzzy set membershipbelong to the model structures of the class (129). The basis functions gk thenare constructed from the fuzzy set membership functions and the inferencerules. The exact relationship is described in [Sj�oberg et al., 1995].6.3 Estimating Non-linear Black Box ModelsThe model structure is determined by the following choices� The regression vector (typically built up from past inputs and outputs)� The basic function � (local) or � (ridge)� The number of elements (nodes) in the expansion (129).Once these choices have been made ŷ(tj�) = g('(t); �) is a well de�ned func-tion of past data and the parameters �. The parameters are made up ofcoordinates in the expansion (129), and from location and scale parametersin the di�erent basis functions.All the algorithms and analytical results of Section 2 can thus be applied. ForNeural Network applications these are also the typical estimation algorithmsused, often complemented with regularization, which means that a term isadded to the criterion (24), that penalizes the norm of �. This will reducethe variance of the model, in that "spurious" parameters are not allowed totake on large, and mostly random values. See e.g. [Sj�oberg et al., 1995].For wavelet applications it is common to distinguish between those param-eters that enter linearly in ŷ(tj�) (i.e. the coordinates in the function ex-pansion) and those that enter non-linearly (i.e. the location and scale pa-rameters). Often the latter are seeded to �xed values and the coordinatesare estimated by the linear least squares method. Basis functions that givea small contribution to the �t (corresponding to non-useful values of thescale and location parameters) can them be trimmed away ("pruning" or"shrinking"). 53



7 User's Issues7.1 Experiment DesignIt is desirable to a�ect the conditions under which the data are collected.The objective with such experiment design is to make the collected data setZN as informative as possible with respect to the models to be built using thedata. A considerable amount of theory around this topic can be developedand we shall here just review some basic points.The �rst and most important point is the following one1. The input signal u must be such that it exposes all the relevant proper-ties of the system. It must thus not be too \simple". For example, apure sinusoidu(t) = A cos!twill only give information about the system's frequency response atfrequency !. This can also be seen from (68). The rule is that� the input must contain at least as many di�erent frequencies asthe order of the linear model to be built.To be on the safe side, a good choice is to let the input be random(such as �ltered white noise). It then contains all frequencies.Another case where the input is too simple is when it is generated byfeedback such asu(t) = �Ky(t) (135)If we would like to build a �rst order ARX modely(t) + ay(t� 1) = bu(t� 1) + e(t)we �nd that for any given � all models such thata+ bK = � 54



will give identical input-output data. We can thus not distinguish be-tween these models using an experiment with (135). That is, we cannot distinguish between any combinations of \a" and \b" if they satisfythe above condition for a given \�". The rule is� If closed-loop experiments have to be performed, the feedback lawmust not be too simple. It is to be preferred that a set-point inthe regulator is being changed in a random fashion.The second main point in experimental design is2. Allocate the input power to those frequency bands where a good modelin particularly important.This is also seen from the expression (68).If we let the input be �ltered white noise, this gives information howto choose the �lter. In the time domain it is often useful to think likethis:� Use binary (two-level) inputs if linear models are to be built: Thisgives maximal variance for amplitude-constrained inputs.� Check that the changes between the levels are such that the inputoccasionally stays on one level so long that a step response fromthe system has time, more or less, to settle. There is no need to letthe input signal switch so quickly back and forth that no responsein the output is clearly visible.Note that the second point is really just a reformulation in the timedomain of the basic frequency domain advice: let the input energy beconcentrated in the important frequency bands.A third basic piece of advice about experiment design concerns thechoice of sampling interval.3. A typical good sampling frequency is 10 times the bandwidth of thesystem. That corresponds roughly to 5 { 7 samples along the rise timeof a step response.
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7.2 Model Validation and Model SelectionThe system identi�cation process has, as we have seen, these basic ingredients� The set of models� The data� The selection criterionOnce these have been decided upon, we have, at least implicitly, de�ned amodel: The one in the set that best describes the data according to thecriterion. It is thus, in a sense, the best available model in the chosen set.But is it good enough? It is the objective of model validation to answer thatquestion. Often the answer turns out to be \no", and we then have to goback and review the choice of model set, or perhaps modify the data set. SeeFigure 2!How do we check the quality of a model? The prime method is to investigatehow well it is capable of reproducing the behavior of a new set of data (thevalidation data) that was not used to �t the model. That is, we simulate theobtained model with a new input and compare this simulated output. Onemay then use one's eyes or numerical measurements of �t to decide if the�t in question is good enough. Suppose we have obtained several di�erentmodels in di�erent model structures (say a 4th order ARX model, a 2ndorder BJ model, a physically parameterized one and so on) and would like toknow which one is best. The simplest and most pragmatic approach to thisproblem is then to simulate each one of them on validation data, evaluatetheir performance, and pick the one that shows the most favorable �t tomeasured data. (This could indeed be a subjective criterion!)The second basic method for model validation is to examine the residuals(\the leftovers") from the identi�cation process. These are the predictionerrors"(t) = "(t; �̂N) = y(t)� ŷ(tj�̂N )i.e. what the model could not \explain". Ideally these should be independentof information that was at hand at time t�1. For example if "(t) and u(t��)56
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turn out to be correlated, then there are things in y(t) that originate fromu(t� �) but have not been properly accounted for by ŷ(tj�̂N ) The model hasthen not squeezed out all relevant information about the system from thedata.It is good practice to always check the residuals for such (and other) depen-dencies. This is known as residual analysis.7.3 Software for System Identi�cationIn practice System Identi�cation is characterized by some quite heavy numer-ical calculations to determine the best model in each given class of models.This is mixed with several user choices, trying di�erent model structures,�ltering data and so on. In practical applications we will thus need goodsoftware support. There are now many di�erent commercial packages foridenti�cation available, such as Mathwork's System Identi�cation Toolbox[Ljung, 1986], Matrix0xs System Identi�cation Module [MATRIXx, 1991] andPIM [Landau, 1990]. They all have in common that they o�er the followingroutines:A Handling of data, plotting, etc.Filtering of data, removal of drift, choice of data segments, etc.B Non-parametric identi�cation methodsEstimation of covariances, Fourier transforms, correlation- and spectral-analysis, etc.C Parametric estimation methodsCalculation of parametric estimates in di�erent model structures.D Presentation of modelsSimulation of models, estimation and plotting of poles and zeros, com-putation of frequency functions, and plotting Bode diagrams, etc.E Model validation 58



Computation and analysis of residuals ("(t; �̂N)). Comparison betweendi�erent models' properties, etc.The existing program packages di�er mainly in various user interfaces andby di�erent options regarding the choice of model structure according to Cabove. For example, MATLAB's Identi�cation Toolbox [Ljung, 1986] coversall linear model structures discussed here, including arbitrarily parameterizedlinear models in continuous time.Regarding the user interface, there is now a clear trend to make it graphicallyoriented. This avoids syntax problems and relies more on \click and move",at the same time as tedious menu-labyrinths are avoided. More aspects ofCAD tools for system identi�cation are treated in [Ljung, 1993].7.4 The Practical Side of System Identi�cationIt follows from our discussion that the most essential element in the processof identi�cation { once the data have been recorded { is to try out variousmodel structures, compute the best model in the structures, using (24), andthen validate this model. Typically this has to be repeated with quite a fewdi�erent structures before a satisfactory model can be found.The di�culties of this process should not be underestimated, and it willrequire substantial experience to master it. Here follows however a procedurethat could prove useful to try out.Step 1: Looking at the DataPlot the data. Look at them carefully. Try to see the dynamics withyour own eyes. Can you see the e�ects in the outputs of the changesin the input? Can you see nonlinear e�ects, like di�erent responses atdi�erent levels, or di�erent responses to a step up and a step down?Are there portions of the data that appear to be "messy" or carryno information. Use this insight to select portions of the data forestimation and validation purposes.Do physical levels play a role in your model? If not, detrend the databy removing their mean values. The models will then describe how59



changes in the input give changes in output, but not explain the actuallevels of the signals. This is the normal situation. The default situation,with good data, is that you detrend by removing means, and then selectthe �rst two thirds or so of the data record for estimation purposes,and use the remaining data for validation. (All of this corresponds tothe "Data Quickstart" in the MATLAB Identi�cation Toolbox.)Step 2: Getting a Feel for the Di�culties.Compute and display the spectral analysis frequency response estimate,the correlation analysis impulse response estimate as well as a fourthorder ARX model with a delay estimated from the correlation analysisand a default order state-space model computed by a subspace method.(All of this corresponds to the "Estimate Quickstart" in the MATLABIdenti�cation Toolbox.) This gives three plots. Look at the agreementbetween the� Spectral Analysis estimate and the ARX and state-space models'frequency functions.� Correlation Analysis estimate and the ARX and state-space mod-els' transient responses� Measured Validation Data output and the ARX and state-spacemodels' simulated outputs. We call this the Model Output Plot.If these agreements are reasonable, the problem is not so di�cult, anda relatively simple linear model will do a good job. Some �ne tuning ofmodel orders, and noise models have to be made and you can proceedto Step 4. Otherwise go to Step 3.Step 3: Examining the Di�cultiesThere may be several reasons why the comparisons in Step 2 did notlook good. This section discusses the most common ones, and how theycan be handled:� Model Unstable: The ARX or state-space model may turn outto be unstable, but could still be useful for control purposes. Thenchange to a 5- or 10-step ahead prediction instead of simulationin the Model Output Plot.60



� Feedback in Data: If there is feedback from the output to theinput, due to some regulator, then the spectral and correlationsanalysis estimates are not reliable. Discrepancies between theseestimates and the ARX and state-space models can therefore bedisregarded in this case. In residual analysis of the parametricmodels, feedback in data can also be visible as correlation betweenresiduals and input for negative lags.� Noise Model: If the state-space model is clearly better thanthe ARX model at reproducing the measured output this is anindication that the disturbances have a substantial inuence, andit will be necessary to carefully model them.� Model Order: If a fourth order model does not give a goodModel Output plot, try eighth order. If the �t clearly improves, itfollows that higher order models will be required, but that linearmodels could be su�cient.� Additional Inputs: If the Model Output �t has not signi�cantlyimproved by the tests so far, think over the physics of the applica-tion. Are there more signals that have been, or could be, measuredthat might inuence the output? If so, include these among the in-puts and try again a fourth order ARX model from all the inputs.(Note that the inputs need not at all be control signals, anythingmeasurable, including disturbances, should be treated as inputs).� Nonlinear E�ects: If the �t between measured and model out-put is still bad, consider the physics of the application. Are therenonlinear e�ects in the system? In that case, form the nonlinear-ities from the measured data. This could be as simple as formingthe product of voltage and current measurements, if you realizethat it is the electrical power that is the driving stimulus in, say, aheating process, and temperature is the output. This is of courseapplication dependent. It does not cost very much work, however,to form a number of additional inputs by reasonable nonlineartransformations of the measured ones, and just test if inclusion ofthem improves the �t. See Example 2.� Still Problems? If none of these tests leads to a model that isable to reproduce the Validation Data reasonably well, the conclu-61



sion might be that a su�ciently good model cannot be producedfrom the data. There may be many reasons for this. The mostimportant one is that the data simply do not contain su�cientinformation, e.g., due to bad signal to noise ratios, large and non-stationary disturbances, varying system properties, etc. The rea-son may also be that the system has some quite complicated non-linearities, which cannot be realized on physical grounds. In suchcases, nonlinear, black box models could be a solution. Amongthe most used models of this character are the Arti�cial NeuralNetworks (ANN). See Section 6.Otherwise, use the insights on which inputs to use and which modelorders to expect and proceed to Step 4.Step 4: Fine Tuning Orders and Noise StructuresFor real data there is no such thing as a "correct model structure."However, di�erent structures can give quite di�erent model quality.The only way to �nd this out is to try out a number of di�erent struc-tures and compare the properties of the obtained models. There are afew things to look for in these comparisons:� Fit Between Simulated and Measured Output Look at the�t between the model's simulated output and the measured onefor the Validation Data. Formally, you could pick that model, forwhich this number is the lowest. In practice, it is better to bemore pragmatic, and also take into account the model complexity,and whether the important features of the output response arecaptured.� Residual Analysis Test You should require of a good model,that the cross correlation function between residuals and inputdoes not go signi�cantly outside the con�dence region. A clearpeak at lag k shows that the e�ect from input u(t�k) on y(t) is notproperly described. A rule of thumb is that a slowly varying crosscorrelation function outside the con�dence region is an indicationof too few poles, while sharper peaks indicate too few zeros orwrong delays. 62



� Pole Zero Cancelations If the pole-zero plot (including con�-dence intervals) indicates pole-zero cancelations in the dynamics,this suggests that lower order models can be used. In particular,if it turns out that the order of ARX models has to be increased toget a good �t, but that pole-zero cancelations are indicated, thenthe extra poles are just introduced to describe the noise. Then tryARMAX, OE, or BJ model structures with an A or F polynomialof an order equal to that of the number of non-cancelled poles.What Model Structures Should be Tested?Well, you can spend any amount of time to check out a very largenumber of structures. It often takes just a few seconds to computeand evaluate a model in a certain structure, so that you should have agenerous attitude to the testing. However, experience shows that whenthe basic properties of the system's behavior have been picked up, itis not much use to �ne tune orders in absurdum just to improve the�t by fractions of percents. For ARX models and state-space modelsestimated by subspace methods there are also e�cient algorithms forhandling many model structures in parallel.Multivariable SystemsSystems with many input signals and/or many output signals are calledmultivariable. Such systems are often more challenging to model. Inparticular systems with several outputs could be di�cult. A basicreason for the di�culties is that the couplings between several inputsand outputs leads to more complex models: The structures involvedare richer and more parameters will be required to obtain a good �t.Generally speaking, it is preferable to work with state-space models inthe multivariable case, since the model structure complexity is easierto deal with. It is essentially just a matter of choosing the model order.Working with Subsets of the Input Output Channels: In theprocess of identifying good models of a system it is often useful to selectsubsets of the input and output channels. Partial models of the system'sbehavior will then be constructed. It might not, for example, be clearif all measured inputs have a signi�cant inuence on the outputs. Thatis most easily tested by removing an input channel from the data,building a model for how the output(s) depend on the remaining input63
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