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Abstract

Some methods for consistent closed loop subspace system identification presented in the literature are
analyzed and compared to a recently published subspace algorithm for both open as well as for closed loop
data, the DSR e algorithm. Some new variants of this algorithm are presented and discussed. Simulation
experiments are included in order to illustrate if the algorithms are variance efficient or not.
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1 Introduction

A landmark for the development of so called subspace
system identification algorithms can be said to be the
algorithm for obtaining a minimal state space model re-
alization from a series of known Markov parameters or
impulse responses, i.e., as presented by Ho and Kalman
(1966). Subspace system identification have been an
important research field during the last 2.5 decades.
Larimore (1983, 1990) presented the Canonical Variate
Analysis (CVA) algorithm. The N4SID algorithm pre-
sented by Overschee and de Moor (1994) and further-
more, subspace identification of deterministic systems,
stochastic systems as well as combined deterministic
linear dynamic systems are developed and discussed
in detail in Overschee and de Moor (1996) and where
also the Robust N4SID was presented. In the standard
N4SID an oblique projection is used and this method
was biased for colored inputs and an extra orthogo-
nal projection, in order to remove the effect of future
inputs on future outputs, was included in the Robust
N4SID. See also Katayama (2005) and the references
therein for further contributions to the field. These
subspace system identification algorithms may in some
circumstances lead to biased estimates in case of closed
loop input and output data.

A subspace system identification method, based on

observed input and output data, which estimates the
system order as well as the entire matrices in the
Kalman filter including the Kalman filter gain matrix,
K, and the square root of the innovations covariance
matrix, F , was presented in Di Ruscio (1994, 1996).
This algorithm is implemented in the DSR function in
the D-SR Toolbox for MATLAB. The DSR estimate
of the innovation square root covariance matrix F is
consistent both for open loop as well as for closed loop
data. The DSR method was compared with other al-
gorithms and found to give the best model in compar-
ison to the other methods, based on validation, and on
a real world waste and water example in Sotomayor
et al. (2003a,b).

The DSR e method presented in Di Ruscio (2008)
and used in the thesis by Nilsen (2005) is a simple
subspace system identification method for closed and
open loop systems. DSR e is a two stage method where
the innovations process is identified consistently in the
first step. The second step is simply a deterministic
system identification problem.

In Qin and Ljung (2003), Weilu et al. (2004) a sub-
space system identification algorithm denoted PAR-
SIM E for closed loop data is presented. Repetitive
and successive computations of the innovations as well
as the Markov parameters are incorporated in the al-
gorithm in order to overcome the correlation problem
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in traditional subspace algorithms in case of feedback
in the data. An extended version is presented in Qin
et al. (2005).

The main contributions of this paper can be itemized
as follows:

• An extended presentation, further discussions and
details of the DSR e algorithm in Di Ruscio (2008)
are given in this paper. In particular the second
stage of the algorithm, the deterministic identi-
fication problem, is discussed in detail and some
solution variants are discussed and presented in
Sections 6.1, 6.2 and 6.3 of this paper.

• The PARSIM algorithm by Qin et al. (2005) is
considered, and in particular the PARSIM-E al-
gorithm in Qin and Ljung (2003) is discussed and
presented in detail in Section 5.1. In the PARSIM-
E algorithm some Markov parameters are re-
estimated. A modified version of the PARSIM-E
algorithm which does not re-estimate the Markov
parameters is presented in Section 5.2. The mod-
ified version follows the lines in the PARSIM-S
algorithm (Algorithm 2) in Qin et al. (2005). The
PARSIM-S method is biased for direct closed loop
data, as pointed out in Qin et al. (2005), while the
modified algorithm in Section 5.2 is consistent for
closed loop subspace identification.

• Due to the lack of software implementation of the
PARSIM E algorithm from the authors this al-
gorithm is discussed and implemented along the
lines in Section 5.1 and the “past-future” data ma-
trix Eq. presented in Di Ruscio (1997) and im-
plemented as a MATLAB m-file function. The
Matlab m-file code of the PARSIM-E algorithm is
enclosed in the Appendix.

This implementation of the PARSIM E algorithm
is compared with the DSR e function in the D-SR
Toolbox for MATLAB, and a new variant of the
dsr e method is discussed. This new variant con-
sists of an Ordinary Least Squares (OLS) step for
solving a deterministic identification problem for
computing the entire Kalman filter model matri-
ces.

• The DSR e algorithm is a subspace system identi-
fication algorithm which may be used to estimate
the entire Kalman filter model matrices, includ-
ing the covariance matrix of the innovations pro-
cess and the system order, directly from known in-
put and output data from linear MIMO systems.
Simulation experiments on a linear MIMO closed
loop system is given in this paper, and the algo-
rithm is shown to give promising estimation results

which are comparable to the corresponding esti-
mates from the Prediction Error Method (PEM).

• Monte Carlo simulation experiments, on two ex-
amples (a SISO and a MIMO system), are pre-
sented which show that the DSR e algorithm out-
performs the PARSIM-E method for closed loop
subspace system identification. Interestingly, the
DSR e algorithm is on these two examples shown
to give as efficient parameter estimates as the Pre-
diction Error Method (PEM).

The contributions in this paper are believed to be of
interest for the search for an optimal subspace identifi-
cation algorithm for open and closed loop systems. The
PARSIM-E and DSR methods may be viewed as sub-
space methods which are based on matrix Eqs. where
the states are eliminated from the problem.

Noticing that if the states of a linear dynamic system
are known then the problem of finding the model matri-
ces is a linear regression problem, see e.g., Overschee
and de Moor (1996). Some methods for closed loop
subspace identification with state estimation along the
lines of the higher order ARX model approach pre-
sented in Ljung and McKelvey (1995) are presented
in Jansson (2003, 2005) and Chiuso (2007). In this
class of algorithms the states are estimated in a prelim-
inary step and then the model matrices are estimated
as a linear regression problem. In Ljung and McKelvey
(1995) a method denoted, SSNEW, with MATLAB m-
file code is presented. In Jansson (2003) a method de-
noted SSARX was presented, and in Jansson (2005) a
three step method denoted, NEW, is presented. Chiuso
(2007) presents the methods denoted, PBSID and PB-
SID opt, and shows some asymptotic similarities with
the SSARX and the PBSID algorithms. It is also shown
that the PBSID opt algorithm is a row weighted ver-
sion of the SSNEW algorithm in Ljung and McKelvey
(1995). Furthermore, Chiuso (2007) stated that the
PBSID opt algorithm is found to be asymptotically
variance efficient on many examples but not in gen-
eral.

It would be of interest to compare these methods
with the DSR e algorithm, in particular for systems
with a low signal to noise ratio. The SSNEW m-file
in the original paper by Ljung and McKelvey (1995)
would be a natural starting point in this work, but
this is outside the scope of this paper and is a topic for
further research, where the results are believed to be
of interests.

The rest of the paper is organized as follows. In
Section 2 the problem definition and some preliminary
notations used in the paper are given. In Section 3
some preliminaries and matrix notations are defined
and used throughout the paper. In Section 4 the sub-
space identification problem with closed loop data is
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discussed in connection with the “past-future” data
matrix presented in Di Ruscio (1997). In Section 5
the PARSIM-E method, Weilu et al. (2004), Qin et al.
(2005), for closed loop system identification is discussed
as well as a variant of this method. In Section 6 we
discuss the dsr e method with a new variant of imple-
mentation in case of a known system order. In Section
7 some examples which illustrate the behavior of the
algorithms are presented. Finally some concluding re-
marks follow in Section 8.

2 Problem formulation

We will restrict ourselves to linearized or linear state
space dynamic models of the form

xk+1 = Axk +Buk + Cek, (1)

yk = Dxk + Euk + Fek, (2)

with x0 as the initial predicted state and where a series
of N input and output data vectors uk and yk ∀ k =
0, 1, . . . , N − 1 are known, and where there is possible
feedback in the input data. In case of output feedback
the feed through matrix is zero, i.e. E = 0. Also
for open loop systems the feed through matrix may be
zero. We will include a structure parameter g = 0 in
case of feedback data or for open loop systems in which
E = 0, and g = 1 for open loop systems when E is to
be estimated. Furthermore, for the innovations model
(1) and (2) ek is white with unit covariance matrix, i.e.
E(eke

T
k ) = I .

Note that corresponding to the model (1) and (2)
on innovations form we may, if the system is not pure
deterministic, define the more common Kalman filter
on innovations form by defining the innovations as εk =
Fek and then K = CF−1 is the Kalman filter gain.
Hence, the Kalman filter on innovations form is defined
as

xk+1 = Axk +Buk +Kεk, (3)

yk = Dxk + Euk + εk, (4)

where the innovations process εk have covariance ma-
trix E(εkε

T
k ) = FFT .

The quintuple system matrices (A,B,C,D,E, F )
and the Kalman filter gain K are of appropriate di-
mensions. The problem addressed in this paper is to
determine these matrices from the known data. Both
closed and open loop systems are addressed.

3 Notations and definitions

Hankel matrices are frequently used in realization the-
ory and subspace system identification. The special

structure of a Hankel matrix as well as some matching
notations, which are frequently used throughout the
paper, are defined in the following.

Definition 3.1 (Hankel matrix) Given a vector se-
quence

sk ∈ Rnr ∀ k = 0, 1, 2, . . . , (5)

where nr is the number of rows in sk.
Define integer numbers j, i and nc and define the

matrix Sj|i ∈ Rinr×nc as follows

Sj|i
def
=


sj sj+1 sj+2 · · · sj+nc−1
sj+1 sj+2 sj+3 · · · sj+nc

...
...

...
. . .

...
sj+i−1 sj+i sj+i+1 · · · sj+i+nc−2

 ,
which is defined as a Hankel matrix because of the spe-
cial structure. A Hankel matrix is symmetric and the
elements are constant across the anti-diagonals. The
integer numbers j, i and nc have the following inter-
pretations:

• j start index or initial time in the sequence used to
form Sj|i, i.e., sj, is the upper left vector element
in the Hankel matrix.

• i is the number of nr-block rows in Sj|i.

• nc is the number of columns in the Hankel matrix
Sj|i.

One should note that this definition of a Hankel ma-
trix Sj|i is slightly different to the notation used in
Overschee and de Moor (1996) (pp. 34-35) where the
subscripts denote the first and last element of the first
column in the block Hankel matrix, i.e. using the nota-
tion in Overschee and de Moor (1996) a Hankel matrix
U0|i is defined by putting u0 in the upper left corner
and ui in the lower left corner and hence U0|i would
have i+ 1 rows.

Examples of such vector processes, sk, to be used in
the above Hankel-matrix definition, are the measured
process outputs, yk ∈ Rm, and possibly known inputs,
uk ∈ Rr.

Definition 3.2 (Basic matrix definitions)
The extended observability matrix, Oi, for the pair
(D,A) is defined as

Oi
def
=


D
DA
...
DAi−1

 ∈ Rim×n, (6)

where the subscript i denotes the number of block rows.
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The reversed extended controllability matrix, Cd
i ,

for the pair (A,B) is defined as

Cd
i

def
=
[
Ai−1B Ai−2B · · · B

]
∈ Rn×ir, (7)

where the subscript i denotes the number of block
columns. A reversed extended controllability matrix,
Cs

i , for the pair (A,C) is defined similar to (7), i.e.,

Cs
i

def
=
[
Ai−1C Ai−2C · · · C

]
∈ Rn×im, (8)

i.e., with B substituted with C in (7). The lower block
triangular Toeplitz matrix, Hd

i ∈ Rim×(i+g−1)r , for
the quadruple matrices (D,A,B,E).

Hd
i

def
=


E 0m×r 0m×r · · · 0m×r
DB E 0m×r · · · 0m×r
DAB DB E · · · 0m×r
...

...
...

. . .
...

DAi−2B DAi−3B DAi−4B · · · E


where the subscript i denotes the number of block rows
and i+g−1 is the number of block columns, and where
0m×r denotes the m × r matrix with zeroes. A lower
block triangular Toeplitz matrix Hs

i ∈ Rim×im for the
quadruple (D,A,C, F ) is defined as

Hs
i

def
=


F 0m×m 0m×m · · · 0m×m
DC F 0m×m · · · 0m×m
DAC DC F · · · 0m×m
...

...
...

. . .
...

DAi−2C DAi−3C DAi−4C · · · F


Given two matrices A ∈ Ri×k and B ∈ Rj×k, the

orthogonal projection of the row space of A onto the
row space of B is defined as

A/B = ABT (BBT )†B. (9)

The following property is used

A/

[
A
B

]
= A. (10)

Proof of Eq. (10) can be found in e.g., Di Ruscio (1997).

4 Background theory

Consider the “past-future” data matrix, Eq. (4) in the
paper Di Ruscio (1997). This same equation is also
presented in Eq. (27) in the Di Ruscio (1997) paper.
We have

YJ|L =
[
Hd

L OLC̃
d
J OLC̃

s
J

]  UJ|L+g−1
U0|J
Y0|J


+ OL(A−KD)JX0|1 +Hs

LEJ|L, (11)

where C̃s
J = Cs

J(A−KD,K) is the reversed extended
controllability matrix of the pair (A − KD,K), and
C̃d

J = Cd
J(A −KD,B −KE) is the reversed extended

controllability matrix of the pair (A−KD,B −KE),
and where Cd

J and Cs
J are defined in Eqs. (7) and (8),

respectively.
One should here note that the term OL(A −

KD)JX0|1 → 0 exponentially as J approaches infin-
ity. Also note Eq. (43) in Di Ruscio (2003) with proof,
i.e.,

XJ|1 =
[
C̃d

J C̃s
J

] [ U0|J
Y0|J

]
+ (A−KD)JX0|1, (12)

which relates the ”past” data matrices, U0|J
and Y0|J to the ”future” states XJ|1 =[
xJ xJ+1 · · · xN−(J+L)

]
.

Note that Eq. (11) is obtained by putting (12) into
the following common matrix equation in the theory of
subspace system identification, i.e.

YJ|L = OLXJ|1 +Hd
LUJ|L+g−1 +Hs

LEJ|L. (13)

Eq. (11) is of fundamental importance in connection
with subspace system identification algorithms. One
problem in case of closed loop subspace identification
is that the future inputs, UJ|L+g−1 in the regressor ma-
trix are correlated with the future innovations, EJ|L.

Proof 4.1 (Proof of Eq. (11))
From the innovations model, Eqs. (1) and (2), we find
Eq. (13), where definitions for the Hankel matrices
YJ|L, UJ|L+g−1 and EJ|L as well as the matrices OL,

Hd
L and Hs

L are given in Section 3.
From the Kalman filter on innovations form, Eqs.

(3) and (4), we obtain the optimal Kalman filter pre-
diction, ȳk, of the output, yk, as ȳk = Dxk + Euk,
and the Kalman filter state Eq., xk+1 = Axk +Buk +
K(yk − ȳk). From this we find Eq. (12) for the states.

Finally, putting XJ|1 given by Eq. (12) into Eq. (13)
proves Eq. (11). �

The matrices Hd
L and Hs

L with Markov parameters
are block lower triangular Toeplitz matrices. This
lower triangular structure may be utilized in order to
overcome the correlation problem, and recursively com-
puting the innovations sequences, εJ|1, . . ., εJ|L in the
innovations matrix EJ|L. This was the method for
closed loop subspace identification proposed by Qin
et al. (2005) and Weilu et al. (2004). This method de-
noted PARSIM is discussed in the next Section 5 and
compared to the DSR e method, Di Ruscio (2008), in
an example in Section 7.1.

Another closely related subspace system identifica-
tion method, i.e. the DSR e method, Di Ruscio (2008),
which works for both open as well as for closed loop
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identification is built as a two stage method where
the innovations sequences, εJ|1, are identified from Eq.
(11) in the first step. Noticing that putting L = 1 and
g = 0 (no direct feed through term in the output equa-
tion) then we see that Eq. (11) also holds for closed
loop systems, i.e., we have

YJ|1 =
[
DC̃d

J DC̃s
J

] [ U0|J
Y0|J

]
+ FEJ|1. (14)

Hence, the DSR F matrix estimates in Di Ruscio
(1996) is consistent also for closed loop data. The sec-
ond step is an optimal OLS step and hence solved as a
deterministic problem. The DSR e method is further
discussed in Section 6.

5 Recursive computation of
innovations

5.1 The PARSIM-E Algorithm

We will in this section work through the PARSIM-
E method presented by Qin and Ljung (2003), and
further discussed in Weilu et al. (2004) and in the
same instant indicate a drawback with this method (i.e.
Markov parameters are recomputed and large matrices
pseudo inverted when J large) and show how we may
overcome this. This was also noticed in Qin and Ljung
(2003). In order to give a simple view and understand-
ing of the PARSIM method we present a few of the
first iterations in the algorithm.

Step 1: i = 0

Let L = 1, J →∞ and g = 0 in (11) and we have

YJ|1 =
[
DC̃d

J DC̃s
J

] [ U0|J
Y0|J

]
+ εJ|1. (15)

From Eq. (15) we find estimate of the innovations
εJ|1 = FEJ|1 as well as the indicated matrix in the

regression problem, i.e.,
[
DC̃d

J DC̃s
J

]
. Hence, an

ordinary Least Squares (OLS) problem is solved. This
step is identical to the first step in the DSR e method.

Step 2: i = 1

We may now express from Eq. (11)

YJ+1|1 =

[
DB DAC̃d

J DAC̃s
J DK

] 
UJ|1
U0|J
Y0|J
εJ|1


+FEJ+1|1. (16)

From Eq. (16) we find estimate of the innovations
εJ+1|1 = FEJ+1|1. The regression problem increases

in size and the matrix
[
DB DAC̃d

J DAC̃s
J DK

]
is estimated as an OLS problem.

Hence, at this stage the non-zero part of the first
block rows in the Toeplitz matrices Hd

L and Hs
L, i.e.

the Markov parameters DB and DK, respectively, are
computed. Proceeding in this way each non-zero block
row, Hd

i|1 and Hs
i|1, in the Toeplitz matrices is com-

puted as follows.

Step 3: i = 2

We may now express from Eq. (11)

YJ+2|1 =

[
Hd

2|1 DA2C̃d
J DA2C̃s

J Hs
2|1

]

UJ|1
UJ+1|1
U0|J
Y0|J
εJ|1
εJ+1|1


+FEJ+2|1, (17)

where

Hd
2|1 =

[
DAB DB

]
∈ Rm×2r, (18)

and

Hs
2|1 =

[
DAK DK

]
∈ Rm×2m. (19)

From Eq. (17) we find estimate of the innovations
εJ+2|1 = FEJ+2|1 as well as an estimate of the matrix[
DAB DB DA2C̃d

J DA2C̃s
J DAC DC

]
.

Hence, at this stage the Markov parameters DB
and DK are recomputed. Note that we have used
the future outputs UJ|2 in the regressor matrix
to be inverted and that the regressor matrix have
increased in size. Note that at iteration i = 2 the
Markov parameters DB and DK are known from the
previous iteration i = 1. An algorithm which does
not recompute DB and DK is presented in the next
section.

75



Modeling, Identification and Control

Step 4: i := 3

We may now express from Eq. (11)

YJ+3|1 =

[
Hd

3|1 DA2C̃d
J DA3C̃s

J Hs
3|1

]


UJ|1
UJ+1|1
UJ+2|1
U0|J
Y0|J
εJ|1
εJ+1|1
εJ+2|1


+FEJ+3|1, (20)

where

Hd
3|1 =

[
DA2B DAB DB

]
∈ Rm×3r, (21)

and

Hs
3|1 =

[
DA2K DAK DK

]
∈ Rm×3m. (22)

From Eq. (20) we find estimate of the innovations
εJ+3|1 = FEJ+3|1 as well as the indicated matrix with
model parameters.

Step 5: General case i = 2, 3, . . . , L.

We may now express from Eq. (11)

YJ+i|1 =

[
Hd

i|1 DAiC̃d
J DAiC̃s

J Hs
i|1

]

UJ|i
U0|J
Y0|J
εJ|i−1
εJ+i−1|1


+FEJ+i|1 (23)

where

Hd
i|1 =

[
DAi−1B · · · DB

]
∈ Rm×ir, (24)

and

Hs
i|1 =

[
DAi−1K · · · DK

]
∈ Rm×im. (25)

From Eq. (23) we find estimate of the innovations
εJ+i|1 = FEJ+i|1. The process given by Eq. (23) is
performed for i = 0, 1, 2, . . . , L in order to find the ex-
tended observability matrix OL+1 and to use the shift
invariance technique in order to find A.

This means that at each new iteration (repetition)
i one new last row εJ+i−1|1 is included in the regres-
sion matrix on the right hand side of Eq. (23) and one
new innovations sequence εJ+i|1 = FEJ+i|1 is identi-
fied. This procedure is performed for i = 0, 1, . . . L

in order to identify OL+1 and using the shift invari-
ance method for calculating OL and OLA. Here L is a
user specified horizon into the future for predicting the
number of states. Note also that the regression matrix
to be inverted at each step increases in size for each
new iteration.

We can see that at each iteration, i.e. in particu-
lar for i ≥ 2 unnecessary Markov parameters are esti-
mated. However, it is possible to exploit this by sub-
tracting known terms from the left hand side of Eq.
(23). Note that at iteration i = 1 the Markov param-
eters DB and DK are computed and these may be
used in the next step i = 2. This modified strategy is
discussed in the next Section 5.2.

Software implementation of the PARSIM-E algo-
rithm has not been available so an own Matlab m-file
function has been implemented. This function is avail-
able upon request.

5.2 A modified recursive algorithm

We will in this section present a modified version of
the PARSIM-E method presented by Qin and Ljung
(2003), and utilize the block lower triangular structure
of the Toeplitz matrices Hd

L and Hs
L. In the PARSIM-

E algorithm some of the Markov parameters are re-
computed in the iterations for i = 2, 3, . . . , L even if
they are known from the previous iterations. The al-
gorithm will in this section be modified.

A modified version of PARSIM was also commented
upon in Qin et al. (2005), i.e., in Algorithm 2 of the
paper a sequential PARSIM (PARSIM-S) algorithm is
presented. This algorithm utilizes the fact that some
Markov parameters in the term Hd

i|1UJ|i are known
at each iteration i ≥ 2. However, the term Hs

i|1εJ|i
is omitted and the innovations, εJ|1, . . ., εJ+L|1 are
not computed in this algorithm, and the PARSIM-S
method is biased for direct closed loop data, also com-
mented upon in Remark 2 of that paper. To make the
PARSIM-S applicable to closed loop data, they refer
to the innovation estimation approach as proposed in
Qin and Ljung (2003).

The iterations for i = 0 and i = 1 are the same
as in the previous PARSIM-E method in Eqs. (15)
and (16). Hence, at this stage the Markov parameters
DB, DK and the innovations sequences εJ|1 = FEJ|1
and εJ+1|1 = FEJ+1|1 are known. We will in this
section modify the PARSIM-E method to exploit this
and modify the left hand side regressed variable term
at each new iteration i = 2, 3, . . . , L.
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Step 3: i = 2

We may now express from Eq. (11)

YJ+2|1 −DBUJ+1|1 −DKεJ+1|1 =

[
DAB DA3C̃d

J DA3C̃s
J DAK

] 
UJ|1
U0|J
Y0|J
εJ|1


+FEJ+2|1. (26)

From Eq. (26) we find estimate of the innovations
εJ+2|1 = FEJ+2|1 and new Markov parameters in the
indicated matrix on the right hand side are computed.

Step 4: i := 3

We may now express from Eq. (11)

YJ+3|1 −DABUJ+1|1 −DBUJ+2|1

−DAKεJ+1|1 −DKεJ+2|1 =

[
DA2B DA2C̃d

J DA2C̃s
J DA2K

] 
UJ|1
U0|J
Y0|J
εJ|1


+FEJ+3|1. (27)

From Eq. (27) we find estimate of the innovations
εJ+3|1 = FEJ+3|1 as well as the indicated matrix with
model parameters. As we see the matrix of regression
variables on the right hand side is unchanged during
the iterations and one matrix inverse (projection) may
be computed once.

Step 5: General case i = 2, 3, . . . , L.

We may now express from Eq. (11)

YJ+i|1 −

Hd
i−1|1︷ ︸︸ ︷[

DAi−2B · · · DB
]
UJ+1|i−1

−

Hs
i−1|1︷ ︸︸ ︷[

DAi−2K · · · DK
]
εJ+1|i−1 =

[
DAi−1B DAiC̃d

J DAiC̃s
J DAi−1K

] 
UJ|1
U0|J
Y0|J
εJ|1


+FEJ+i|1,

where for i ≥ 2

Hd
i|1 =

[
DAi−1B · · · DB

]
=

[
DAi−1B Hd

i−1|1

]
, (28)

and

Hs
i|1 =

[
DAi−1K · · · DK

]
=

[
DAi−1K Hs

i−1|1

]
. (29)

From this general case we find estimate of the in-
novations εJ+i|1 = FEJ+i|1. The process given are
performed for i = 2, . . . , L in order to find the ex-
tended observability matrix OL+1 and to use the shift
invariance technique in order to find A. Furthermore
the Markov parameters in matrices Hd

L|1 and Hs
L|1 are

identified. See next section for further details.

5.3 Computing the model parameters

In both the above algorithms the model matrices
(A,B,K,D) may be determined as follows. The fol-
lowing matrices are computed, i.e.,

ZJ|L+1 =
[
OL+1C̃

d
J OL+1C̃

s
J

]
= OL+1

[
C̃d

J C̃s
J

]
, (30)

and the matrices with Markov parameters

Hd
L|1 =

[
DALB DAL−1B · · · DB

]
, (31)

Hs
L|1 =

[
DALC DAL−1K · · · DK

]
. (32)

From this we find the system order, n, as the num-
ber of non-zero singular values of ZJ|L+1, i.e. from
a Singular Value decomposition (SVD) of the ZJ|L+1

matrix. From this SVD we also find the extended
observability matrices OL+1 and OL. Furthermore A
may be found from the shift invariance principle, i.e.
A = O†LOL+1(m+1 : (L+1)m, :) and D = OL(1 : m, :).

The B and K matrices may simply be computed
by forming the matrices OLB and OLK from the es-
timated matrices Hd

L+1|1 and Hs
L+1|1 and then pre-

multiply OLB and OLK with the pseudo inverse O†L =
(OT

LOL)−1OT
L .

5.4 Discussion

The two methods investigated in this section do not
seem to give very promising results compared to the
dsr e method. It seems that the variance of the pa-
rameter estimates in general is much larger than the
dsr e estimates.

The reason for the high variance in the PARSIM-E
method is probably that the algorithm is sensitive to
data with low signal to noise ratios, and the reason
for this is that “large” matrices are pseudo inverted
when J is “large”. Recall that in Eq. (11) the therm
OL(A − KD)JX0|J → 0 only when J → ∞, because

77



Modeling, Identification and Control

the states X0|J are correlated with the data matrix
with regression variables. In practice the past horizon
parameter J is finite and the term is negligible. How-
ever, a matrix of larger size than it could have been
is inverted and this gives rise to an increased variance,
compared to the DSR e method in the next Section 6.
It is also important to recognize that only the first in-
novations sequence, εJ|1, really is needed, as pointed
out in Di Ruscio (2008) and that it seems unneces-
sary to compute the innovation sequences, εJ+i|1, ∀
i = 1, . . . L, and then forming the innovations matrix
EJ|L+1, i.e.,

EJ|L+1 =



εJ|1
εJ+1|1

...
εJ+i|1

...
εJ+L|1


. (33)

Only the first row, εJ|1, is actually needed in order
to find the model matrices as we will show in the next
Section 6. Since unnecessary future innovations rows in
EJ|L+1 matrix are computed, this probably also gives
rise to large variances in estimates from the PARSIM
algorithm.

In the PARSIM strategy, Section 5, a matrix with
increasing size, ir+Jr+Jm+mi = (J+i)r+(J+i)m =
(J+ i)(m+r), is pseudo inverted at each new iteration
i = 0, 1, 2, . . . , L. The matrix to be inverted increases
in size during the iterative process when 0 ≤ i ≤ L.
Both the pseudo inverse problem and the iterations
give rise to this large variance. Updating techniques
for this matrix inverse may be exploited, however.

The modified PARSIM method in Section 5.2 was
also implemented with a QR factorization and the re-
cursive algorithm implemented in terms of the R fac-
tors only. This strategy seems not to improve the vari-
ance considerably and the variances are approximately
the same. The reason is probably that J should be
“large” for the method to work. It is interesting to
note that in this modified algorithm only a matrix of
row size r+rJ+mJ+m = (J+1)(r+m) is pseudo in-
verted and that this regressor matrix is held unchanged
during the iterations and is inverted once.

We believe that the dsr e method, with a consistent
estimate of the innovations process in a first step, fol-
lowed with an optimal estimation of a noise free deter-
ministic subspace identification problem, or if the order
is known solved by an optimal OLS (ARX) step leads
us to the lower bound on the variance of the param-
eter estimates. Note that the first step in the dsr e
method is a consistent filtering of the output signal,
yJ|1, into a signal part, ydJ|1, and a noise innovations

part, εJ|1. We will in the next Section 6 discuss the
dsr e method.

6 The DSR e algorithm

In Di Ruscio (2008) a very simple, efficient subspace
system identification algorithm which works for both
open as well as for closed loop data was presented.
This algorithm was developed earlier and presented in
an internal report in (2004) and used in Nilsen (2005).
In this section an improved and extended presentation
of the algorithm is presented.

In the DSR e algorithm the signal content, ydJ|1, of

the future data, yJ|1 =
[
yJ yJ+1 . . . yN−1

]
∈

Rm×(N−J), is estimated by projecting the “past” onto
the “future”, and in case of closed loop data when the
direct feed-through term is zero (E = 0), i.e. estimated
by the following projection

ydJ|1 = DXJ|1 = YJ|1/

[
U0|J
Y0|J

]
, (34)

where the projection operator “/” is defined in Eq. (9),
and where we have used that for large J or as J →∞
we have that

XJ|1/

[
U0|J
Y0|J

]
= XJ|1, (35)

which may be proved from Eq. (12) by using Eq. (10).
The past data matrices, U0|J and Y0|J , are uncorre-

lated with the future innovations sequence, EJ|1. In
the same stage the innovations sequence εJ|1 = FEJ|1
in Eq. (15) is then consistently estimated as

εJ|1 = FEJ|1 = YJ|1 − YJ|1/
[
U0|J
Y0|J

]
. (36)

Note that both the signal part, ydJ|1, and the innovation
part, εJ|1, are used in the dsr e algorithm.

For open loop systems we may have a direct feed
through term in the output equation, i.e., E 6= 0 and
with an output Eq. yk = Dxk +Euk + Fek we obtain

YJ|1 = DXJ|1 + EUJ|1 + FEJ|1, (37)

and the signal parts may in this case be computed as,

ydJ|1 = DXJ|1 + EUJ|1 = YJ|1/

 UJ|1
U0|J
Y0|J

 , (38)

where we have used Eq. (10). Furthermore, the inno-
vations are determined by

εJ|1 = FEJ|1 = YJ|1 − YJ|1/

 UJ|1
U0|J
Y0|J

 . (39)
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The algorithm is a two step algorithm where in the
first step the output data are split into a signal part,
ydJ|1, and a noise (innovations) part, εJ|1 = FEJ|1, i.e.,
as

yJ|1 = ydJ|1 + εJ|1. (40)

This step of splitting the future outputs, yJ|1, into a
signal part, DXJ|1, and an innovations part, εJ|1, is
of particular importance in the algorithm. We propose
the following choices for solving this first step in the
algorithm:

• Using a QR (LQ) decomposition. Interestingly,
the square root of the innovations covariance ma-
trix, F , is also obtained in this first QR step, as in
Di Ruscio (1996). Using the definitions or the QR
decomposition gives approximately the same re-
sults in our simulation examples. One should here
note that when the QR decomposition is used also
the Q factors as well as the R factors are used. We
have the from the QR decomposition[

U0|J+g

Y0|J+1

]
=

[
R11 0
R21 R22

] [
Q1

Q2

]
, (41)

where g = 0 for closed loop systems and systems
with no direct feed through term in the output
Eq., i.e., when E = 0. For open loop systems and
when we want to estimate the direct feed through
matrix E we put g = 1. From, the decomposition
(41) we have

ydJ|1 = R21Q1, (42)

εJ|1 = R22Q2, (43)

and we notice that also the Q sub matrices are
used. Notice also that we may take F = R22 or
compute a new QR decomposition of εJ|1 in order
to estimate F .

• Another interesting solution to this step is to use
a truncated Conjugate Gradient (CG) algorithm,
Hestenes and Stiefel (1952), in order to compute
the projection. The CG algorithm is shown to
be equivalent with the Partial Least Squares al-
gorithm in Di Ruscio (2000) for univariate (single
output) systems. This will include a small bias
but the variance may be small. This choice may
be considered for noisy systems in which PEM and
the DSR e method have unsatisfactory variances
or for problems where one has to chose a “large”
past horizon parameter J . However, one have to
consider a multivariate version, e.g. as the one
proposed in Di Ruscio (2000).

This step of splitting the future outputs, yJ|1, into
a signal part, DXJ|1, and an innovations part, εJ|1, is

consistent and believed to be close to optimal when J
is “large”.

The second step in the dsr e algorithm is a deter-
ministic subspace system identification step if the sys-
tem order has to be found, or an optimal deterministic
Ordinary Least Squares (OLS) step if the system order
is known, for finding the Kalman filter model. Using
PEM for solving the second deterministic identification
problem may also be an option.

Hence, the future innovations εJ|1 = FEJ|1 (noise
part) as well as the given input and output data are
given and we simply have to solve a deterministic iden-
tification problem. Note also that if the system order,
n, is known this also is equivalent to a deterministic
OLS or ARX problem for finding the model. This
method is effectively implemented through the use of
QR (LQ) factorization, see the D-SR Toolbox for Mat-
lab function dsr e.m (unknown order) and dsr e ols
or PEM if the order is known.

At this stage the innovations sequence, εJ|1, and the

noise free part, ydJ|1, of the output yJ|1 are known from
the first step in the DSR e algorithm. Hence we have to
solve the following deterministic identification problem

xk+1 = Axk +
[
B K

] [ uk
εk

]
, (44)

ydk = Dxk, (45)

where not only the input and output data, uk, and, ydk,
respectively, are known, but also the innovations, εk,
are known. Hence, the data

uk
εk
ydk

 ∀ k = J, J + 1, . . . , N − 1 (46)

are known, and the model matrices (A,B,K,D) may
be computed in an optimal OLS problem.

The second step in the DSR e method is best dis-
cussed as a deterministic identification problem where
we will define new input and output data satisfying a
deterministic system defined as follows

yk := ydk

uk :=

[
uk
εk

]  ∀ k = 1, 2, . . . , N (47)

where N := N − J is the number of samples in the
time series to be used in the deterministic identification
problem. Hence we have here defined new outputs, yk,
from all corresponding samples in the noise free part
ydJ|1 ∈ Rm×K where the number of columns is K =

N−J . Similarly, new input data uk ∈ Rr+m, is defined
from the sequence uJ|1 =

[
uJ uJ+1 · · · uN−1

]
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of the original input data, and from the the computed
innovations in εJ|1 =

[
εJ εJ+1 · · · εN−1

]
.

In the examples of Section 7 we illustrate the sta-
tistical properties of the method on closed loop data,
and we show that DSR e is as optimal as PEM, and
far more efficient than the PARSIM method.

We believe that the first step in the DSR e algorithm
is close to optimal. Since we have some possibilities for
implementing the second step in the algorithm, i.e.,
the deterministic identification problem, at least in the
multiple output case. We discuss some possibilities for
the second step separately in the following subsections.
This second deterministic identification step is believed
to be of interest in itself.

6.1 Deterministic subspace identification
problem

Step 2 in the dsr e.m implementation in the D-SR
Toolbox for MATLAB is basically as presented in this
subsection.

Consider an integer parameter L such that the sys-
tem order, n, is bounded by 1 ≤ n ≤ mL. As an
example for a system with m = 2 outputs and n = 3
states it is sufficient with L = 2.

From the known deterministic input and output data
uk
yk

}
∀ k = 0, 1, . . . , N define the data matrix equa-

tion

Y1|L = ÃLY0|L + B̃LU0|L+g, (48)

where the matrices are given by

ÃL = OLA(OT
LOL)−1OT

L , (49)

B̃L =
[
OLB Hd

L

]
− ÃL

[
Hd

L 0mL×r
]
.(50)

The same data as used in Eq. (48), i.e. Y0|L+1 =[
Y0|L
YL|1

]
and U0|L+g are used to form the matrix Eq.

Y0|L+1 = OL+1X0|J +Hd
L+1U0|L+g. (51)

There are some possibilities to proceed but we suggest
estimating the extended observability matrix from Eq.
(51) and the B, E matrices as an optimal OLS problem
from Eq. (48), using the corresponding R sub matrices
from the following LQ (transpose of QR) factorisation,
i.e., [

U0|L+g

Y0|L+1

]
=

[
R11 0
R21 R22

] [
Q1

Q2

]
. (52)

Due to the orthogonal properties of the QR factorisa-
tion we have

R22 = OL+1X0|JQ
T
2 , (53)

and the system order, n, the extended observability
matrix OL+1, and thereafter A and D, may be esti-
mated from an SVD of R22, and using the shift invari-
ance technique. An alternative to this is to form the
matrix Eq.

R̄22 = ÃLR22, (54)

and estimate the system order as the n largest non-
zero singular values of the mL singular values of the
matrix R22. Here R̄22 is obtained as R22 with the first
m block row deleted and R22 as R22 with the last m
block row deleted. Using only the n largest singular
values we have from the SVD that R22 = U1S1V

T
1 and

we may chose OL = U1 and find A from Eq. (54), i.e.,
as

A = UT
1 R̄22V1S

−1
1 . (55)

Note that there are common block rows in R22 and
R̄22. This may be utilized and we may use

A = UT
1

[
Ū1

R22(Lm+ 1 : (L+ 1)m, :)V1S
−1
1

]
, (56)

which is used in the DSR algorithms. This means that
we, for the sake of effectiveness, only use the truncated
SVD of R22 and the last block row in R22 in order to
compute an estimate of the A matrix. The D matrix
is taken as the first m block row in OL = U1. This way
of computing the A and D matrices is a result from Di
Ruscio (1994).

Finally, the parameters in the B and E matrices are
estimated as an optimal OLS step, using the structure
of matrix B̃L and the equation

R̄21 = ÃLR21 + B̃LR11, (57)

where R̄21 is obtained as R21 with the first m block
row deleted and R21 as R21 with the last m block
row deleted. Since ÃL now is known the problem
B̃LR11 = R̄21 − ÃLR21 may be solved for the parame-
ters in B (and E for open loop systems) as an optimal
OLS problem in the unknown (n+m)r parameters in B
and E, Di Ruscio (2003). We also mention in this con-
nection that it is possible to include constraints in this
OLS step, in order to e.g. solve structural problems,
e.g. with K = 0 as in output error models.

6.2 Deterministic OLS/ARX step 2

The content in this section is meant as an option for
solving the second (deterministic identification) step in
the DSR e algorithm. However, the theory may also be
used to identify a higher order ARX model followed by
model reduction to a model with the adequate system
order.
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Specify a prediction horizon parameter, L, as speci-
fied above. We have the input and output ARX model

yk = A1yk−L + · · ·+ALyk−1

+B1uk−L + · · ·+BLuk−1, (58)

where Ai ∈ Rm×m and Bi ∈ Rm×r ∀ i = 1, . . . , L are
matrices with system parameters to be estimated. We
only consider the case with a delay of one sample, i.e.
without direct feed through term (E = 0) in Eq. (2).

From the observed data form the OLS/ARX regres-
sion problem

YL|1 = θ

[
Y0|L
U0|L

]
(59)

where the parameter matrix, θ, ∈ Rm×L(m+r), is given
by

θ =
[
A1 · · ·ALB1 · · ·BL

]
. (60)

This regression problem is effectively solved through a
LQ (transpose of QR problem) factorization.

Note that for single output systems then we simply
may chose L = n and the state space model matrices
A, B, K and D are determined simply from the corre-
spondence with θ and the observer canonical form.

For multiple output systems we may chose L smaller
than the system order according to the inequality 1 ≤
n ≤ mL. Hence, a non-minimal state space model of
ordermL on block observer form is constructed directly
from the OLS estimate, θ, i.e.,

A =



AL Im 0 · · · 0
...

...
. . . 0

Ai 0
. . . 0

...
... Im

A1 0 . . . 0


, B =



BL

...
Bi

...
B1

 ,

D =
[
Im 0 · · · 0

]
. (61)

Hence, the A matrix in the non-minimal state space
model has the Ai ∈ Rm×m matrices in the left block
column. The B matrix in the non-minimal state space
model of order n ≤ mL is constructed from the Bi ∈
Rm×r matrices. Noticing that the model has the same
impulse response matrices as the underlying system, a
state space realization with order n is constructed by
Hankel matrix realization theory through a Singular
Value Decomposition (SVD).

Using the realization algorithm in Ho and Kalman
(1966), Hankel matrices H1|L = OLCJ and H2|L =
OLACJ are constructed from impulse response matri-
ces hi = CAi−1B ∀ i = 1, . . . , L + J , where L + J
is the number of impulse response matrices. Using

the SVD realization algorithm in Zeiger and McEwen
(1974) gives the model matrices A, B and D and the
system order, n.

The above method with outline of implementation is
included in the D-SR Toolbox for MATLAB function
dsr e ols.m.

6.3 Discussion

We have tried with different implementations of the
deterministic identification problem in the second step
of the DSR e algorithms. In Section 6.1 we presented a
deterministic subspace identification problem for iden-
tifying both the system order, n, as well as the model
matrices A,B,K,D,E. Interestingly, this choice was
found to be the best one for all simulation experiments.
To our knowledge this subspace system identification
method is both consistent and close to efficient for
closed as well as for open loop data. The efficiency of
the algorithm is illustrated by simulation experiments
in the section of examples.

In Section 6.2 we implemented the deterministic
identification problem as an OLS/ARX step. However,
due to the identification of the block observer form non
minimal state space model of order mL and the need
for model reduction, this did not match the low vari-
ance estimates from the dsr e algorithm with the de-
terministic subspace solution as presented in Section
6.1.

An optimal PEM step for direct identification of the
parameters of an n-th order canonical form state space
model of the deterministic identification second step in
the DSR e algorithm is also considered. This option
does not in general improve the estimates and in some
examples gave larger variance than the dsr e imple-
mentation. However, this option should be investigated
further.

Finally one should note that there are two horizon
integer parameters involved in the DSR e algorithm.
The first parameter J defines “past” input and output
data which is used to remove noise from the “future”
outputs. The parameter J should be chosen “large”
such that the error term D(A−KF )JX0|J in the first
projection is negligible. Note that the size of this term
may be analyzed after one run of the algorithm. How-
ever, on our simulation experiments J in the range
6 ≤ J ≤ 10 gave parameter estimates with similar
variances as the PEM estimates, see the examples in
Section 7. The horizon J is only used in the first step
so that the second step of the algorithm is independent
of this parameter.

In the second step a prediction horizon parameter L
for the system order is specified such that the system
order is bounded by, 1 ≤ n ≤ mL. In the single output
case low variance estimates are obtained with L = n
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and in the multiple output case L should be chosen as
small as possible, as a rule of thumb. Note however
that we have observed that it often is better to chose
L = 2 than L = 1 even for a first order system in
which n = 1. The horizon parameters may also with
advantage be chosen based on model validation.

7 Numerical examples

7.1 SISO one state closed loop system

We have found that the PARSIM-E method works well
on the system in Weilu et al. (2004), Case 2 below.
However, we will here study a slightly modified system
in which the PARSIM-E method fails to give compa-
rable results as the PEM and DSR e methods, Case 1
below. Hence, this example is a counter example which
shows that a method based on recursive innovations
computations may give poor estimates.

Consider the following system with proper order of
appearance

yk = xk + ek, (62)

uk = −Kpyk + rk, (63)

xk+1 = Axk +Buk +Kek, (64)

We consider the following two cases:

Case 1 A = 0.9, B = 0.5, K = 0.6 and an initial value
x1 = 0. ek is white noise with standard deviation
0.1. For the controller we use Kp = 0.6 and rk
as a white noise signal with E(r2k) = 1 generated
in Matlab as R = randn(N, 1) and rk = R(k).
Simulation horizon N = 1000.

Case 2 Example in Weilu et al. (2004). The same
parameters as in Case 1 above but with B = 1,
K = 0.5, ek is white noise with standard deviation
1 and rk as a white noise signal with E(r2k) = 2.
Simulation horizon N = 4000.

The system was simulated with discrete time in-
stants 1 ≤ k ≤ N . This was done M = 100 times
with different noise realizations on the innovations ek
but with the same reference signal, rk, i.e. a Monte
Carlo simulation is performed for both the above cases.
For the DSR e, DSR e ols and the PARSIM-E meth-
ods we used the same algorithm horizon parameters,
J = 6 and L = 3. The system identification Tool-
box Ident function pem was used with the calls dat =
iddata(Y,U, 1) and m = pem(dat, n) with system order
n = 1.

This example shows clearly that the variance of the
PARSIM-E method is larger than the corresponding
estimates from the DSR e algorithm which are compa-
rable and as efficient as the optimal PEM estimates, in
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Figure 1: Pole estimates of the closed loop system in
Example 7.1 with parameters as in Case 1.
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Figure 2: B parameter estimates of the closed loop sys-
tem in Example 7.1 with parameters as in
Case 1. In Figs. 1 and 2 the PARSIM-E
algorithm fails to give acceptable estimates
compared to the corresponding DSR e and
PEM estimates.
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Figure 3: K parameter estimates of the closed loop sys-
tem in Example 7.1 with parameters as in
Case 1. Here the PARSIM-E algorithm gives
acceptable estimates compared to the corre-
sponding DSR e and PEM estimates.
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particular for the A and B estimates as illustrated in
Figures 1 and 2. The variance of the K estimates from
PARSIM are comparable with the DSR e and PEM es-
timates, see Figure 3. To our belief we have coded the
PARSIM-E method in an efficient manner. An m-file
implementation of the basic PARSIM-E algorithm is
enclosed this paper. We also see that the DSR e esti-
mates are as optimal as the corresponding PEM esti-
mates. We have here used the standard dsr e method
as presented in Sections 6 and 6.1, as well as a version
of DSR e with an OLS/ARX second step as presented
in Section 6.2, denoted DSR e ols.

For this example the PEM, DSR e and DSR e ols
algorithms give approximately the same parameter es-
timates. Results from DSR e and PEM are illustrated
in the lower part of Figures 1, 2 and 3.

In order to better compare the results we measure
the size of the covariance matrix of the error between
the estimates and the true parameters, i.e.,

Palg =
N

M − 1

M∑
i=1

(θ̂i − θ0)(θ̂i − θ0)T , (65)

as

Valg = trace(Palg), (66)

where subscript “alg” means the different algorithms,
i.e. PEM, DSR e, DSR e ols and PARSIM-E. Here the

true parameter vector is θ0 =
[

0.9 0.5 0.6
]T

and

the corresponding estimates θ̂i =
[
Â B̂ K̂

]T
i

for
each estimate i = 1, . . . ,M in the Monte carlo simula-
tion. From the simulation results of Case 1 we obtain
the results

VDSR e = 0.8712, (67)

VPEM = 0.9926, (68)

VDSR e ols = 1.0565, (69)

VPARSIM-E = 1.0774. (70)

It is interesting to note that the DSR e algorithm for
this example gives a lower value than PEM for the
Valg measure of the parameter error covariance matrix

in Eq. (65). The reason for this is believed to be due
to some default settings of the accuracy in PEM and
this is not considered further.

Finally we illustrate the estimated A parameters for
the same system as in Weilu et al. (2004), i.e., with
parameters in Case 2 above, see Figure 4. For this
example the PARSIM-E method gives parameter esti-
mates with approximately the same variance as DSR e
and PEM. However, this is generally not the case as
we have demonstrated in Figures 1, 2 and 3.
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A parameter estimates: PEM and DSR
e

Number of simulations (Monte carlo)

Figure 4: Pole estimates of the closed loop system in
Example 7.1 with parameters as in Case 2,
and using PARSIM e, PEM and DSR e with,
B = 1.0, K = 0.5 and E(e2k) = 1 and rk
white noise with variance E(r2k) = 2. See
Figure 1 for a counter example.
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Figure 5: Elements in the deterministic gain matrix,
hd = D(I3 − A)B, estimates of the closed
loop system in Example 7.2. Both PEM and
DSR e ols estimates are illustrated and the
correct gains indicated with solid lines.
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Figure 6: Elements in the Kalman filter stochastic gain
matrix, hs = D(I3−A)−1K+I2, estimates of
the closed loop system in Example 7.2. Both
PEM and DSR e ols estimates are illustrated
and the correct gain solid line.
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Figure 7: Eigenvalue estimates for from the DSR e
method. The correct eigenvalues are λ1 =
0.85 and a complex conjugate pair, λ2,3 =
0.75 ± j0.3708. Complex eigenvalues are in
complex conjugate pairs. Hence, the negative
imaginary part is not presented.

7.2 Closed loop MIMO 2× 2 system with
n = 3 states

Consider the MIMO output feedback system

yk = Dxk + wk, (71)

uk = G(rk − yk), (72)

xk+1 = Axk +Buk + vk. (73)

where

A =

 1.5 1 0.1
−0.7 0 0.1
0 0 0.85

 , B =

 0 0
0 1
1 0

 , (74)

D =

[
3 0 −0.6
0 1 1

]
. (75)

The feedback is obtained with

G =

[
0.2 0
0 0.2

]
. (76)

and rk with a binary sequence as a reference for each
of the two outputs in yk. The process noise vk and
measurements noise, wk are white with covariance ma-
trices E(vkv

T
k ) = 0.052I3 and E(wkw

T
k ) = 0.12I2, re-

spectively. For comparison purpose we present the de-
terministic gain from uk to yk, i.e.,

hd = D(I3 −A)−1B =

[
16 15
2.6667 −2.5

]
, (77)

and the stochastic gain of the Kalman filter from inno-
vations, ek to output yk as

hs = D(I3 −A)−1K + I2 =

[
2.8368 7.4925
−0.8998 −0.2143

]
(78)
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Figure 8: Eigenvalue estimates from PEM. The correct
eigenvalues are λ1 = 0.85 and a complex con-
jugate pair, λ2,3 = 0.75 ± j0.3708. Complex
eigenvalues are in complex conjugate pairs.
Hence, the negative imaginary part is not
presented.

A Monte Carlo simulation with M = 100 different
experiments, 1 ≤ i ≤ M , is performed. The simula-
tion results for the deterministic gain matrix is illus-
trated in Figure 5 and for the stochastic gain matrix,
hs, is illustrated in Figure 6. Furthermore we have
presented eigenvalue estimates for both DSR e and the
PEM method in Figures 7 and 8, respectively. For the
DSR e method we used the algorithm horizon param-
eters, J = 6 and L = 3. The PARSIM-E estimates are
out of range and are not presented.

8 Conclusion

We have in this paper investigated the subspace based
method for closed loop identification proposed by
Weilu et al. (2004). Alternative versions of this method
are discussed and implemented in parallel and com-
pared with the subspace identification method DSR e
which works for both open and closed loop system. We
have found by simulation experiments that the variance
of the PARSIM-E method is much larger and in general
not comparable with the DSR e and PEM algorithms.

The first step in the PARSIM-E and the DSR e al-
gorithms is identical. However, the methods differ in
the second step. In the PARSIM-E algorithm itera-
tions are included in order to estimate the future in-
novations over the “future” horizon 0 ≤ i ≤ L. In
the DSR e second step a simple deterministic subspace
system identification problem is solved.

The difference in the second step/stage of the
PARSIM-E and the DSR e methods is believed to
be the reason for the high variance in the PARSIM-
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E estimates. In the PARSIM-E algorithm a matrix,
P = OL+1[C̃d

J C̃
s
J ] ∈ R(L+1)m×J(r+m), is computed

in order to compute the extended observability ma-
trix OL+1. The matrix P will be of much larger size
than necessary since J is “large” in order for the term
OL+1(A − KD)JX0|J to be negligible. In the DSR e
algorithm the horizon J is skipped from the second
step of the algorithm and the extended observabil-
ity matrix OL+1 is identified from a matrix of size
(L+ 1)m× (L+ 1)(m+ r) and where L may be chosen
according to 1 ≤ n ≤ mL.

We have tested the DSR e algorithm against some
implementation variants using Monte Carlo simula-
tions. The DSR e algorithm implemented in the D-SR
Toolbox for MATLAB is found to be close to optimal
by simulation experiments.
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9 Appendix: Software

function [a,d,b,k,HLd,HLs]=parsim_e(Y,U,L,g,J,n)

% [A,C,B,K]=parsim_e(Y,U,L,g,J,n)

%Purpose

% Implementation of the PARSIM-E algorithm

% On input

% Y,U -The output and input data matrices

% L - Prediction horizon for the states

% g - g=0 for closed loop systems

% J - Past horizon so that (A-KD)^J small

% n - System order

if nargin == 5; n = 1; end

if nargin == 4; n = 1; J = L; end

if nargin == 3; n = 1; J = L; g = 0; end

if nargin == 2; n = 1; J = 1; g = 0; L=1; end

[Ny,ny] = size(Y);

if isempty(U)==1; U=zeros(Ny,1); end

[Nu,nu] = size(U);

N = min(Ny,Nu);

K = N - L - J;

% 1. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if nargin < 6

disp(’Ordering the given input output data’)

end

YL = zeros((L+J+1)*ny,K);

UL = zeros((L+J+g)*nu,K);

for i=1:L+J+1

YL(1+(i-1)*ny:i*ny,:) = Y(i:K+i-1,:)’;

end

for i=1:L+J+g

UL(1+(i-1)*nu:i*nu,:) = U(i:K+i-1,:)’;

end

%

Yf=YL(J*ny+1:(J+L+1)*ny,:);

Uf=UL(J*nu+1:(J+L+g)*nu,:);

%

Up=UL(1:J*nu,:);

Yp=YL(1:J*ny,:);

Wp=[Up;Yp];

% general case, PARSIM-E algorithm

Uf_J=[]; Ef_J=[]; OCds=[];

for i=1:L+1

Wf=[Uf_J;Wp;Ef_J];

y_Ji=YL((J+i-1)*ny+1:(J+i)*ny,:);

Hi=y_Ji*Wf’*pinv(Wf*Wf’);

Zd=Hi*Wf;

e_Ji=y_Ji-Zd;

Ef_J=[Ef_J;e_Ji];

OCds=[OCds; ...

Hi(:,(i-1)*nu+1:(i-1)*nu+J*nu+J*ny)];

if i < L+1

Uf_J=UL(J*nu+1:(J+i)*nu,:);

end

end

% Compute A and D/C

[U,S,V]=svd(OCds);

U1=U(:,1:n); S1=S(1:n,1:n);

OL=U1(1:L*ny,:);

OLA=U1(ny+1:(L+1)*ny,:);

a=pinv(OL)*OLA;

d=U1(1:ny,:);

% Markov parameters

HLd=Hi(:,1:L*nu);

HLs=Hi(:,L*nu+J*nu+J*ny+1:end);

% Form OL*B matrix from impulse responses in Hi

ni=(L-1)*nu;

for i=1:L

%ni+1,2*ni

OLB((i-1)*ny+1:i*ny,1:nu)=Hi(:,ni+1:ni+nu);

ni=ni-nu;

end

b=pinv(U1(1:L*ny,:))*OLB;

% Form OL*C matrix from impulse responses in Hi

Hs=Hi(:,L*nu+J*nu+J*ny+1:end);

ni=(L-1)*ny;

for i=1:L

OLC((i-1)*ny+1:i*ny,1:ny)=Hs(:,ni+1:ni+ny);

ni=ni-ny;

end

k=pinv(U1(1:L*ny,:))*OLC;

% END PARSIM_E

86

http://dx.doi.org/10.1109/TAC.1974.1100525
http://creativecommons.org/licenses/by/3.0

	Introduction
	Problem formulation
	Notations and definitions
	Background theory
	Recursive computation of innovations
	The PARSIM-E Algorithm
	A modified recursive algorithm
	Computing the model parameters
	Discussion

	The DSR_e algorithm
	Deterministic subspace identification problem
	Deterministic OLS/ARX step 2
	Discussion

	Numerical examples
	SISO one state closed loop system
	Closed loop MIMO 2 2 system with n=3 states

	Conclusion
	Appendix: Software

