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Abstract

Some proofs concerning a subspace identification algorithm are pre-
sented. It is proved that the Kalman filter gain and the noise innovations
process can be identified directly from known input and output data with-
out explicitly solving the Riccati equation. Furthermore, it is in general
and for colored inputs, proved that the subspace identification of the states
only is possible if the deterministic part of the system is known or identi-
fied beforehand. However, if the inputs are white, then, it is proved that
the states can be identified directly. Some alternative projection matrices
which can be used to compute the extended observability matrix directly
from the data are presented. Furthermore, an efficient method for com-
puting the deterministic part of the system is presented. The closed loop
subspace identification problem is also addressed and it is shown that this
problem is solved and unbiased estimates are obtained by simply including
a filter in the feedback. Furthermore, an algorithm for consistent closed
loop subspace estimation is presented.

Keywords: Identification methods; Subspace methods; Stochastic sys-
tems; Sampled data systems; Linear systems.

1 Introduction

A complete subspace identification (SID) algorithm are discussed and derived
in this paper. The derivation presented is different from the other published pa-
pers on subspace identification, Van Overschee and De Moor (1994), Larimore
(1990), Viberg (1995) and Van Overschee (1995) and the references therein,
because we are using general input and output matrix equations which de-
scribes the relationship between the past and the future input and output data
matrices.
One of the contributions in this paper is that it is shown that the Kalman filter
model matrices, including the Kalman gain and the noise innovations process, of
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a combined deterministic and stochastic system can be identified directly from
certain projection matrices which are computed from the known input and
output data, without solving any Riccati or Lyapunov matrix equations. This
subspace method and results was presented without proof in Di Ruscio (1995)
and Di Ruscio (1997). One contribution in this paper is a complete derivation
with proof. A new method for computing the matrices in the deterministic part
of the system is presented. This method has been used in the DSR Toolbox for
Matlab, Di Ruscio (1996), but has not been published earlier.
Furthermore, it is pointed out that the states, in general (i.e. for colored input
signals), only can be computed if the complete deterministic part of the model
is known or identified first. This is probably the reason for which the state
based subspace algorithms which are presented in the literature does not work
properly for colored input signals. The SID algorithm in Verhagen (1994) works
for colored input signals. The stochastic part of the model is not computed by
this algorithm. The N4SID algorithm in Van Overschee and De Moor (1994)
works well and only for white input signals. The stochastic part of the model is
computed by solving a Riccati equation. However, the robust modification in
Van Overschee and De Moor (1995) works well also for colored input signals.
The rest of this paper is organized as follows. Some basic matrix definitions and
notations are presented in Section 2. The problem of subspace identification of
the states for both colored and white input signals is discussed in Section 3.1.
The subspace identification of the extended observability matrix, which possibly
is the most important step in any SID algorithm, are discussed in Section 3.2. It
is proved that the Kalman filter gain matrix and the noise innovations process
can be identified directly from the data in Section 3.3. A least squares optimal
method for computing the deterministic part of the combined deterministic and
stochastic system is presented in Section 3.4.
The problem of using subspace methods for closed loop systems are pointed out
and some solutions to the problem are pointed out in section 4.
The main contribution in this paper is a new method for subspace system iden-
tification that works for closed loop as well as open loop systems. The method
are based on the theory in Section 3 and is presented in Section 5. This method
is probably one of the best for closed loop subspace system identification.
Some topics and remarks related to the algorithm are presented in Section
6. Numerical examples are provided in Section 7 in order to illustrate the
behaviour of the algorithm both in open and closed loop. Some concluding
remarks follows in Section 8.

2 Notation and definitions

2.1 System and matrix definitions

Consider the following state space model on innovations form

x̄k+1 = Ax̄k + Buk + Cek, (1)

yk = Dx̄k + Euk + Fek, (2)
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where ek is white noise with covariance matrix E(eke
T
k ) = Im. One of the

problems addressed and discussed in this paper is to directly identify (subspace
identification) the system order, n, the state vector x̄k ∈ R

n, and the matrices
(A, B, C, D, E, F ) from a sequence of known input and output data vectors, uk,
∈ R

r and yk, ∈ R
m, respectively. A structure parameter, g, is introduced so

that g = 1 when E is to be identified and g = 0 when E is a-priori known to be
zero. This should be extended to a structure matrix G with ones and zeroes,
the ones pointing to the elements in E which are to be estimated. This is not
considered further here. Based on (1) and (2) we make the following definitions
for further use:

Definition 2.1 (Basic matrix definitions)
The extended observability matrix, Oi, for the pair (D, A) is defined as

Oi
def
=








D
DA
...
DAi−1








∈ R
im×n, (3)

where the subscript i denotes the number of block rows.
The reversed extended controllability matrix, Cd

i , for the pair (A, B) is defined
as

Cd
i

def
=

[
Ai−1B Ai−2B · · · B

]
∈ R

n×ir, (4)

where the subscript i denotes the number of block columns. A reversed extended

controllability matrix, Cs
i , for the pair (A, C) is defined similar to (4), i.e.,

Cs
i

def
=

[
Ai−1C Ai−2C · · · C

]
∈ R

n×im, (5)

i.e., with B substituted with C in (4). The lower block triangular Toeplitz

matrix, Hd
i , for the quadruple matrices (D, A, B, E)

Hd
i

def
=










E 0m×r 0m×r · · · 0m×r

DB E 0m×r · · · 0m×r

DAB DB E · · · 0m×r

...
...

...
. . .

...
DAi−2B DAi−3B DAi−4B · · · E










∈ R
im×(i+g−1)r, (6)

where the subscript i denotes the number of block rows and i + g − 1 is the
number of block columns. Where 0m×r denotes the m × r matrix with zeroes.
A lower block triangular Toeplitz matrix Hs

i for the quadruple (D, A, C, F ) is
defined as

Hs
i

def
=










F 0m×m 0m×m · · · 0m×m

DC F 0m×m · · · 0m×m

DAC DC F · · · 0m×m

...
...

...
. . .

...
DAi−2C DAi−3C DAi−4C · · · F










∈ R
im×im. (7)
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2.2 Hankel matrix notation

Hankel matrices are frequently used in realization theory and subspace sys-
tem identification. The special structure of a Hankel matrix as well as some
matching notations, which are frequently used througout, are defined in the
following.

Definition 2.2 (Hankel matrix) Given a (vector or matrix) sequence of data

st ∈ R
nr×ns ∀ t = 0, 1, 2, . . . , t0, t0 + 1, . . . , (8)

where nr is the number of rows in st and nc is the number of columns in st.
Define integer numbers t0, L and K and define the matrix St as follows

St0|L
def
=








st0 st0+1 st0+2 · · · st0+K−1

st0+1 st0+2 st0+3 · · · st0+K

...
...

...
. . .

...
st0+L−1 st0+L st0+L+1 · · · st0+L+K−2








∈ R
Lnr×Knc. (9)

which is defined as a Hankel matrix because of the special structure. The integer
numbers t0, L and K are defined as follows:

• t0 start index or initial time in the sequence, st0, which is the upper left
block in the Hankel matrix.

• L is the number of nr-block rows in St0|L.

• K is the number of nc-block columns in St0|L.

A Hankel matrix is symmetric and the elements are constant across the anti-
diagonals. We are usually working with vector sequences in subspace system
identification, i.e., st is a vector in this case and hence, nc = 1. Examples of
such vector processes, to be used in the above Hankel-matrix definition, are the
measured process outputs, yt ∈ R

m, and possibly known inputs, ut ∈ R
r. Also

define

yj|i
def
=

[
yT

j yT
j+1 · · · yT

j+i−1

]T ∈ R
im, (10)

which is refereed to as an extended (output) vector, for later use.

2.3 Projections

Given two matrices A ∈ R
i×k and B ∈ R

j×k. The orthogonal projection of the
row space of A onto the row space of B is defined as

A/B = ABT (BBT )†B. (11)

The orthogonal projection of the row space of A onto the orthogonal comple-
ment of the row space of B is defined as

AB⊥ = A − A/B = A − ABT (BBT )†B. (12)
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The following properties are frequently used

A/

[
A
B

]

= A, (13)

A/

[
A
B

]⊥
= 0. (14)

Prof of (13) and (14) can be found in e.g., Di Ruscio (1997b). The Moore-
Penrose pseudo-inverse of a matrix A ∈ R

i×k where k > i is defined as A† =
AT (AAT )−1. Furthermore, consistent with (12) we will use the definition

B⊥ = Ik − BT (BBT )†B, (15)

throughout the paper. Note also the properties that (B⊥)T = B⊥ and B⊥B⊥ =
B⊥.

3 Subspace system identification

3.1 Subspace identification of the states

Consider a discrete time Kalman filter on innovations form, i.e.,

x̄k+1 = Ax̄k + Buk + Kεk, (16)

yk = Dx̄k + Euk + εk, (17)

where x̄k ∈ R
n is the predicted state in a minimum variance sense, εk ∈ R

m

is the innovations at discrete time k, i.e., the part of yk ∈ R
m that cannot be

predicted from past data (i.e. known past inputs and outputs) and the present
input. Furthermore, ȳk = Dx̄k + Euk is the prediction of yk, and εk is white
noise with covariance matrix ∆ = E(εkε

T
k ). Here εk = Fek is the innovations

and the model (1) and (2) is therefore equivalent with the Kalman filter (16)
and (17). Furthermore, we have that K = CF−1 and ∆ = E(εkε

T
k ) = FF T ,

when F is non-singular, i.e., when the system is not deterministic and when the
Kalman filter exists.
A well known belief is that the states is a function of the past. Let us have a
lock at this statement. The predicted state at time k := t0 + J , i.e. x̄t0+J of a
Kalman filter with the initial predicted state at k := t0, i.e. x̄t0 given, can be
expressed as

x̄t0+J = C̃s
Jyt0|J + C̃d

Jut0|J + (A − KD)J x̄t0 , (18)

where C̃s
J = CJ(A − KD, K) is the reversed extended controllability matrix of

the pair (A − KD, K), C̃d
J = CJ(A − KD, B − KE) is the reversed extended

controllability matrix of the pair (A − KD, B − KE) and x̄t0 is the initial
predicted state (estimate) at the initial discrete time t0. See (5) for the definition
of the reversed controllability matrix. J is the past horizon, i.e., the number of
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past outputs and inputs used to define the predicted state (estimate) x̄t0+J at
the discrete time t0 + J .
Using (18) for different t0, i.e. for t0, t0 + 1, t0 + 2, . . ., t0 + K − 1, gives the
matrix equation

Xt0+J = C̃s
JYt0|J + C̃d

JUt0|J + (A − KD)JXt0 , (19)

where

Xt0+J =
[

x̄t0+J x̄t0+J+1 · · · x̄t0+J+K−1

]
∈ R

n×K , (20)

Xt0 =
[

x̄t0 x̄t0+1 · · · x̄t0+K−1

]
∈ R

n×K . (21)

where K is the number of columns in the data matrices. Note that K also is
equal to the number of vector equations of the form (18) which is used to form
the matrix version (19). Note also that the state matrix Xt0 can be eliminated
from (19) by using the relationship

Yt0|J = OJXt0 + Hd
JUt0|J+g−1 + Hs

JEt0|J , (22)

which we have deduced from the innovations form, state space model (1) and
(2). Putting t0 =: t0 + J in (22) gives

Yt0+J |L = OLXt0+J + Hd
LUt0+J |L+g−1 + Hs

LEt0+J |L. (23)

Using (19) to eliminate Xt0+J in (23) gives a matrix equation which relates the
future data matrices Yt0+J |L, Ut0+J |L+g−1, Et0+J |L and the past data matrices
Yt0|J , Ut0|J , Et0|J .
The data is usually defined at time instant (or number of observations) k =
1, 2, . . . , N . Hence, t0 = 1 in this case. However, we are often defining t0 = 0
which corresponds to data defined at k = 0, 1, . . . , N − 1. The bar used to
indicate predicted state is often omitted. Hence, for simplicity of notation, we
define the following equations from (19), (22) and (23),

Y0|J = OJX0 + Hd
JU0|J+g−1 + Hs

JE0|J , (24)

XJ = C̃s
JY0|J + C̃d

JU0|J + (A − KD)JX0, (25)

YJ |L = OLXJ + Hd
LUJ |L+g−1 + Hs

LEJ |L, (26)

for lather use. Furthermore, (26) and (25) gives

YJ |L =
[

Hd
L OLC̃d

J OLC̃s
J

]





UJ |L+g−1

U0|J
Y0|J



 + OL(A − KD)JX0 + Hs
LEJ |L.

(27)

Equation (27) is important for understanding a SID algorithm, because, it gives
the relationship between the past and the future. Note also the terms in (27)
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which are ”proportional” with the extended observability matrix OL. From (27)
we see that the effect from the future inputs, UJ |L+g−1, and the future noise,
EJ |L, have to be removed from the future outputs, YJ |L, in order to recover the
subspace spanned by the extended observability matrix, OL. A variation of this
equation, in which the term X0 is eliminated by using (22) or (24) is presented
in Di Ruscio (1997b). Note also that (25) and (24) gives

XJ =
[

P u
J P y

J

]
[

U0|J
Y0|J

]

− P e
JE0|J , (28)

P u
J = C̃d

J − (A − KD)JO†
JHd

J , (29)

P y
J = C̃s

J + (A − KD)JO†
J , (30)

P e
J = (A − KD)JO†

JHs
J , (31)

where we for the sake of simplicity and without loss of generality have put
g = 1. Equation (28) is useful because it shows that the future states XJ is
in the range of a matrix consisting of past inputs, U0|J , and past outputs, Y0|J
(in the deterministic case or when J → ∞). Note that we have introduced
the notation, P u

J , in order to represent the influence from the past inputs upon
the future. Combining (28) and (26) gives an alternative to (27), i.e. the
”past-future” matrix equation,

YJ |L =
[

Hd
L OLP u

J OLP y
J

]





UJ |L+g−1

U0|J
Y0|J



 − OLP e
JE0|J + Hs

LEJ |L. (32)

The two last terms in (32) cannot be predicted from data, i.e., because E0|J
and EJ |L are built from the innovations process ek.
It is important to note that a consistent estimate of the system dynamics can
be obtained by choosing L and N properly. Choosing Lmin ≤ L where Lmin =
n + rank(D) − 1 and letting N → ∞, is in general, necessary conditions for a
consistent estimate of the dynamics. See Section 3.2 for further details.
On the other side, it is in general, also necessary to let J → ∞ in order to
obtain a consistent estimate of the states. The reason for this is that the term
(A−KD)J = 0 in this case. Hence, the effect of the initial state matrix X0 on
the future states XJ has died out. We have the following Lemma

Lemma 3.1 (Subspace identification of the states)
Let K → ∞ in the data matrices. The projected state matrix is defined as

XJ/





UJ |L+g−1

U0|J
Y0|J



 = O†
L(

Zd

J|L
︷ ︸︸ ︷

YJ |L/





UJ |L+g−1

U0|J
Y0|J



−Hd
LUJ |L+g−1)

= C̃s
JY0|J + C̃d

JU0|J + (A − KD)JX0/





UJ |L+g−1

U0|J
Y0|J



 .

(33)
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Consider the case when

(A − KD)JX0/





UJ |L+g−1

U0|J
Y0|J



 = 0, (34)

which is satisfied when J → ∞ and (A − KD) is stable. This gives

XJ/





UJ |L+g−1

U0|J
Y0|J



 = XJ , (35)

and hence we have, in general, the following expression for the future states

XJ = O†
L(

Zd

J|L
︷ ︸︸ ︷

YJ |L/





UJ |L+g−1

U0|J
Y0|J



−Hd
LUJ |L+g−1). (36)

△

Proof 3.1 The proof is divided into two parts.

Part 1

The relationship between the future data matrices is given by

YJ |L = OLXJ + Hd
LUJ |L+g−1 + Hs

LEJ |L. (37)

Projecting the row space of each term in (37) onto the row space of





UJ |L+g−1

U0|J
Y0|J





gives

YJ |L/





UJ |L+g−1

U0|J
Y0|J



 = OLXJ/





UJ |L+g−1

U0|J
Y0|J



 + Hd
LUJ |L+g−1 + dE1 (38)

where the error term is given by

dE1 = Hs
LEJ |L/





UJ |L+g−1

U0|J
Y0|J



 . (39)

It make sense to assume that future noise matrix EJ |L is uncorrelated with past
data and the future inputs, hence, we have that (w.p.1)

lim
K→∞

dE1 = 0. (40)
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Part 2

Equation (25) gives the relationship between the future state matrix XJ and the
past data matrices. Projecting the row space of each term in this equation onto

the row space of





UJ |L+g−1

U0|J
Y0|J



 gives

XJ/





UJ |L+g−1

U0|J
Y0|J



 = C̃s
JY0|J + C̃d

JU0|J + (A − KD)JX0/





UJ |L+g−1

U0|J
Y0|J



 . (41)

Letting J → ∞ (or assuming the last term to be zero) gives

XJ/





UJ |L+g−1

U0|J
Y0|J



 = C̃s
JY0|J + C̃d

JU0|J . (42)

Letting J → ∞ and assuming the system matrix (A − KD) for the predicted
outputs to be stable in (25) shows that

XJ = C̃s
JY0|J + C̃d

JU0|J . (43)

Comparing (42) and (43) gives

XJ = XJ/





UJ |L+g−1

U0|J
Y0|J



 . (44)

Using (44) in (38) and solving for XJ gives (36). 2

The condition in (35) is usually satisfied for large J , i.e., we have that limJ→∞(A−
KD)J = 0 when A − KD is stable. Note also that the eigenvalues of A − KD
usually are close to zero for “large” process noise (or “small” measurements
noise). Then, (A − KD)J is approximately zero even for relatively small num-
bers J . We will now discuss some special cases

Lemma 3.2 (SID of states: white input)
Consider a combined deterministic and stochastic system excited with a white
input signal. Then

XJ = O†
LYJ |L/





UJ |L+g−1

U0|J
Y0|J



U⊥
J |L+g−1 (45)

when J → ∞.

Proof 3.2 This result follows from the proof of Lemma 3.1 and (36) and using
that

XJU⊥
J |L+g−1 = XJ (46)

when uk is white and, hence, X0/UJ |L+g−1 = 0. 2
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Lemma 3.3 (SID of states: pure stochastic system)
Consider a stochastic system. Then we simply have that

XJ = O†
LYJ |L/Y0|J (47)

when J → ∞ or when (A − KD)JX0/Y0|J = 0 is satisfied.

Proof 3.3 This result follows from the proof of Lemma 3.1 by putting the mea-
sured input variables equal to zero. 2

Lemma 3.1 shows that it is in general (i.e. for colored input signals) necessary
to know the deterministic part of the system, i.e., the Toepliz matrix Hd

L in
(36), in order to properly identify the states. This means that the matrices
B and E in addition to D and A has to be identified prior to computing the
states. I.e. we need to know the deterministic part of the model. However,
a special case is given by Lemma 3.2 and Equation (45) which shows that the
states can be identified directly when the input signals is white. Note also that
the extended observability matrix OL is needed in (36) and (45). OL can be
identified directly from the data. This is proved in the next Section 3.2, and
this is indeed the natural step in a SID algorithm.
In the case of a white input signal or when J → ∞ then, Hd

L, and the state
matrix, XJ , can be computed as by the N4SID algorithm, Van Overschee and
De Moor (1996). From (32) and (28) we have the following lemma

Lemma 3.4 (States, XJ , and Toepliz matrix Hd
L: N4SID)

The following LS solution

[
Hd

L OLP u
J OLP y

J

]
= YJ |L





UJ |L+g−1

U0|J
Y0|J





†

+ dE. (48)

holds in:

i) The deterministic case, provided the input is PE of order J +L+g−1. The
error term, dE = 0, in this case.

ii) When J → ∞, and the input is PE of infinite order. The error term,
dE = 0, in this case.

iii) A white uk gives a consistent estimate of Hd
L irrespective of J > 0. How-

ever, OLP u
J and OLP y

J are not consistent estimates in this case. The first
mL × (L + g)r part of the error term, dE, is zero in this case.

Hence, under conditions i) and ii), OLP u
J and OLP y

J can be computed as in
(48). Then the states can be consistently estimated as

XJ = O†
L

[
OLP u

J OLP y
J

]
[

U0|J
Y0|J

]

, (49)

provided conditions i) and ii) are satisfied, and O†
L is known.
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Proof 3.4 The PE conditions in the lemma are due to the existence of the LS

solution, i.e., the concatenated matrix

[
UJ |L+g−1

U0|J

]

has to be of full row rank.

From (32) we have that the error term in the LS problem is

dE = (−OLP e
JE0|J + Hs

LEJ |L)





UJ |L+g−1

U0|J
Y0|J





†

= −OLP e
JE0|J





UJ |L+g−1

U0|J
Y0|J





†

.(50)

It is clear from (31) that the error term dE = 0 when J → ∞. This proves
condition i) in the lemma. Furthermore, the error term, dE = 0, in the deter-
ministic case because E0|J = 0 in this case. This proves condition ii). Analyzing
the error term, dE, for a white input shows that the error term is of the form

dE =
[

0mL×(L+g)r dE2 dE3

]†
, (51)

where the dE2 and dE3 are submatrices in dE different from zero. Note that
dE2 = 0 for strictly proper systems, g = 0, when uk is white. This proves
condition iii).
The states can then be computed by using (28) or (43), provided conditions i)
or ii) are satisfied. 2

One should note that in the N4SID algorithm the past horizon is put equal to
the future horizon (N4SID parameter i). In order for the above lemma to give
the same results as in the N4SID algorithm we have to put i = L+1, J = L+1
and g = 1, i.e so that J + L = 2L + 1 = 2i. Note that this last result does
not hold in general. It holds in the deterministic case or when J → ∞. The
extended observability matrix OL can be computed as presented in the next
section.

3.2 The extended observability matrix

An important first step in the SID algorithm is the identification of the system
order, n, and the extended observability matrix OL+1. The reason for searching
for OL+1 is that we have to define A from the shift invariance property, Kung
(1978), or a similar method, e.g. as in Di Ruscio (1995). The key is to compute
a special projection matrix from the known data. This is done without using
the states. We will in this section show how this can be done for colored input
signals.

Lemma 3.5 (SID of the extended observability matrix)
The following projections are equivalent

ZJ |L+1 = (YJ |L+1/





UJ |L+g

U0|J
Y0|J



)U⊥
J |L+g (52)

ZJ |L+1 = (YJ |L+1U
⊥
J |L+g)/(

[
U0|J
Y0|J

]

U⊥
J |L+g) (53)
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ZJ |L+1 = YJ |L+1/(

[
U0|J
Y0|J

]

U⊥
J |L+g) (54)

Furthermore, ZJ |L+1 is related to the extended observability matrix OL+1 as

ZJ |L+1 = OL+1X
a
J , (55)

where the “projected states” Xa
J can be expressed as

Xa
J = (XJ/





UJ |L+g

U0|J
Y0|J



)U⊥
J |L+g (56)

= (C̃d
JU0|J + C̃s

JY0|J − (A − KD)JX0/





UJ |L+g

U0|J
Y0|J



)U⊥
J |L+g (57)

= (XJ − (A − KD)JX0





UJ |L+g

U0|J
Y0|J





⊥

)U⊥
J |L+g (58)

= (XJ + (A − KD)JO†
JHs

JE0|J





UJ |L+g

U0|J
Y0|J





⊥

)U⊥
J |L+g (59)

Furthermore, the column space of ZJ |L+1 coincide with the column space of
OL+1 and n = rank(ZJ |L+1) if rank(Xa

J) = n.

Proof 3.5 The proof is divided into two parts. In the first part (52) and (55)
with the alternative expressions in (56) to (58) are proved. In the second part
the equivalence with (52), (53) and (54) are proved.
Part 1 Projecting the row space of each term in (26) with L := L + 1 onto the

row space of





UJ |L+g−1

U0|J
Y0|J



 gives

YJ |L+1/





UJ |L+g−1

U0|J
Y0|J



 = OL+1XJ/





UJ |L+g−1

U0|J
Y0|J



 + Hd
L+1UJ |L+g−1 + dE1,(60)

where we have used (13). Then, w.p.1

lim
K→∞

dE1 = 0, (61)

where the error term, dE1, is given by (39) with L := L + 1 . Removing the
effect of the future input matrix, UJ |L+g−1, on (60) gives (52) and (55) with
Xa

J as in (56).
Furthermore, projecting the row space of each term in (25) onto the row space

of





UJ |L+g−1

U0|J
Y0|J



 gives

XJ/





UJ |L+g−1

U0|J
Y0|J



 = C̃s
JY0|J + C̃d

JU0|J + (A − KD)JX0/





UJ |L+g−1

U0|J
Y0|J



 (62)
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From (25) we have that

C̃s
JY0|J + C̃d

JU0|J = XJ − (A − KD)JX0. (63)

Combining (60), (62) and (63) gives (52) and (57)-(58).
Part 2 It is proved in Di Ruscio (1997) that

ZJ |L+1 = YJ |L+1/

[
UJ |L+g

W

]

U⊥
J |L+g

= YJ |L+1U
⊥
J |L+gW

T (WU⊥
J |L+gW

T )−1WU⊥
J |L+g, (64)

where

W =

[
U0|J
Y0|J

]

. (65)

Using that U⊥
J |L+g

U⊥
J |L+g

= U⊥
J |L+g

in (64) proves the equivalence between (53),

(54) and (52). 2

Lemma 3.6 (Consistency: Stochastic and deterministic systems)
Let J → ∞, then

ZJ |L+1 = OL+1XJU⊥
J |L+g, (66)

where ZJ |L+1 is defined as in Lemma 3.5. A sufficient condition for consistency,
and that OL+1 is contained in the column space of ZJ |L+1, is that there are no
pure state feedback.

Proof 3.6 Letting J → ∞ in (58) gives (66). This can also be proved by using
(44) in (56). Furthermore, if there are pure state feedback then XJU⊥

J |L+g
will

lose rank below the normal rank which is n. 2

Lemma 3.7 (Deterministic systems)
For pure deterministic systems we have that (66) can be changed to

ZJ |L+1 =: YJ |L+1U
⊥
J |L+g = OL+1XJU⊥

J |L+g. (67)

The extended observability matrix OL+1 can be computed from the column space
of YJ |L+1U

⊥
J |L+g

. Furthermore, one can let J = 0 in the deterministic case.

Proof 3.7 This follows from (66) and Lemma 3.5 by excluding the projection
which removes the noise. 2

Lemma 3.8 (Stochastic systems)
For pure stochastic systems we have that (66) can be changed to

ZJ |L+1 =: YJ |L+1/Y0|J = OL+1XJ . (68)

The extended observability matrix OL+1 can be computed from the column space
of YJ |L+1/Y0|J .

Proof 3.8 This follows from (66) and Lemma 3.5 by excluding the input ma-
trices from the equations and definitions. 2
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3.3 Identification of the stochastic subsystem

We will in this section prove that, when the extended observability matrix is
known (from Section 3.2), the kalman filter gain matrix can be identified directly
from the data. Furthermore, it is proved that the noise innovations process can
be identified directly in a first step in the DSR subspace algorithm. This result
was first presented in Di Ruscio (1995) without proof. Some results concerning
this is also presented in Di Ruscio (2001) and (2003).

Lemma 3.9 (The innovations)
Define the following projection from the data

Zs
J |L+1 = YJ |L+1 − YJ |L+1/





UJ |L+g

U0|J
Y0|J



 = YJ |L+1





UJ |L+g

U0|J
Y0|J





⊥

. (69)

Then w.p.1 as J → ∞
Zs

J |L+1 = Hs
L+1EJ |L+1. (70)

Hence, the Toeplitz matrix Hs
L+1 (with Markov matrices F , DC, . . ., DAL−1C)

for the stochastic subsystem is in the column space of 1√
K

Zs
J |L+1 since 1

K
EJ |L+1E

T
J |L+1 =

IL+1×L+1.

Proof 3.9 The relationship between the future data matrices is given by

YJ |L = OLXJ + Hd
LUJ |L+g−1 + Hs

LEJ |L. (71)

Projecting the row space of each term in (71) onto the row space of





UJ |L+g−1

U0|J
Y0|J





gives

YJ |L/





UJ |L+g−1

U0|J
Y0|J



 = OLXJ/





UJ |L+g−1

U0|J
Y0|J



 + Hd
LUJ |L+g−1 + dE1, (72)

then, w.p.1

lim
K→∞

dE1 = 0, (73)

where dE1 is given in (39). Furthermore,

lim
J→∞

XJ/





UJ |L+g−1

U0|J
Y0|J



 = XJ , (74)

where we have used Equations (44) and (38). From (71), (72) and (74) we have
that

YJ |L − YJ |L/





UJ |L+g−1

U0|J
Y0|J



 = Hs
LEJ |L. (75)

Putting L := L + 1 in (75) gives (69). 2
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Note the following from Lemma 3.9. The innovations can be identified directly
as for g = 1

Zs
J |1 = FEJ |1 = YJ |1 − YJ |1/





UJ |1
U0|J
Y0|J



 (76)

or for g = 0 when E = 0

Zs
J |1 = FEJ |1 = YJ |1 − YJ |1/

[
U0|J
Y0|J

]

(77)

One should note that (77) holds for both open and closed loop systems. For
closed loop systems it make sense to only consider systems in which the direct
feed-through matrix, E, from the input uk to the output yk is zero. This result
will be used in order to construct a subspace algorithm whic gives consisten
results for close loop systems, se Section 5.
It is now possible to directly identify the matrices C and F in the innovations
model (1) and (2) and K and ∆ in the Kalman filter (16) and (17). Two
methods are presented in the following. The first one is a direct covariance
based method for computing K and ∆ and the second one is a more numerically
reliable “square root” based method for computing C and F .

Lemma 3.10 (correlation method for K and ∆) Define the projection ma-
trix Zs

J |L+1 as in (69) and define the correlation matrix

∆L+1 =
1

K
Zs

J |L+1(Z
s
J |L+1)

T = Hs
L+1(H

s
L+1)

T . (78)

where the Toepliz matrix Hs
L+1 can be partitioned as

Hs
L+1 =

[
F 0m×Lm

OLC Hs
L

]

, (79)

where C = KF . Hence, (78) can be written as

∆L+1 =

[
∆11 ∆12

∆21 ∆22

]

=

[
FF T F (OLC)T

OLCF T OLC(OLC)T + Hs
L(Hs

L)T

]

. (80)

From this we have

E(εkε
T
k ) = FF T = ∆11 (81)

and

K = CF−1 = O†
L∆21∆

−1
11 . (82)

Lemma 3.11 (square-root method for C and F ) The LQ decomposition
of 1√

K
Zs

J |L+1 gives

1√
K

Zs
J |L+1 = R33Q3. (83)
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Then, the Toeplitz matrix Hs
L+1, and the Markov matrices F , DC, . . ., DAL−1C,

are given directly by

Hs
L+1 = R33. (84)

F can be taken as one of the diagonal m × m block matrices in R33, e.g. the
lower left sub-matrix, i.e.

F = R33(Lm + 1 : (L + 1)m, Lm + 1 : (L + 1)m), (85)

or as the mean of all the diagionals. Furthermore,

OLC = R33(m + 1 : (L + 1)m, 1 : m). (86)

The system matrix C is given by

C = O†
LOLC = O†

LR33(m + 1 : (L + 1)m, 1 : m). (87)

The Kalman filter gain matrix and the innovations covariance matrix are given
by

K = CF−1 (88)

= O†
LR33(m + 1 : (L + 1)m, 1 : m)R−1

33 (Lm + 1 : (L + 1)m, Lm + 1 : (L + 1)m)

∆ = FF T . (89)

3.4 SID of the deterministic subsystem

The parameters in the B and E matrices can be computed from an optimal
least squares problem. A solution to this is given in the following

Lemma 3.12 (Extended state space model)
The states can be eliminated from the state space model (1) and (2) to yield the
so called Extended State Space Model (ESSM)

YJ+1|L = ÃLYJ |L + B̃LUJ |L+g + C̃LEJ |L+1, (90)

where

ÃL
def
= OLA(OT

LOL)−1OT
L ∈ R

Lm×Lm, (91)

B̃L
def
=

[
OLB Hd

L

]
− ÃL

[
Hd

L 0Lm×r

]
∈ R

Lm×(L+g)r, (92)

C̃L
def
=

[
OLC Hs

L

]
− ÃL

[
Hs

L 0Lm×m

]
∈ R

Lm×(L+1)m. (93)

Proof 3.10 Putting J =: J +1 in (37) and substituting XJ+1 = AXJ +BUJ +
CEJ into this equation gives

YJ+1|L = OLAXJ +
[

OLB Hd
L

]
UJ |L+g +

[
OLC Hs

L

]
EJ |L+1. (94)

Equation (37) can be solved for XJ when (A, D) is observable, i.e.,

XJ = O†
L(YJ |L − Hd

LUJ |L+g−1 − Hs
LEJ |L), (95)

where O†
L = (OT

LOL)−1OT
L is the More-Penrose pseudo inverse of OL. Substi-

tuting (95) into (94) gives (90)-(93). 2
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Lemma 3.13 (Projection matrix for the deterministic subsystem)
Define the projection matrix

Zd
J |L+1 = YJ |L+1/





UJ |L+g

U0|J
Y0|J



 . (96)

This matrix can be partitioned into matrices Zd
J+1|L and Zd

J |L which satisfy the
deterministic model

Zd
J+1|L = ÃLZd

J |L + B̃LUJ |L+g. (97)

Proof 3.11 This follows from (90) and (13) and that

lim
K→∞

C̃LEJ |L+1/





UJ |L+g

U0|J
Y0|J



 = 0, (98)

when the future inputs, UJ |L+g, the past data, U0|J and YJ |J , are all independent

of the future noise term, C̃LEJ |L+1. 2

Lemma 3.14 (SID of the system matrices B and E)
Define from (97) the linear equation

Y = B̃LU , (99)

where

Y = Zd
J+1|L − ÃLZd

J |L, (100)

U = UJ |L+g. (101)

From (99) a least squares problem

min
B,E

‖ Y − B̃L(B, E)U ‖2
F (102)

for the unkown elements in B and E are defined as

vec(Y) = X vec(

[
B
E

]

), (103)

which can be solved for the unknown parameters as

vec(

[
B
E

]

) = X †vec(Y), (104)

where X † = (X TX )−1X T . The matrix X is defined as follows

X def
=

L+g
∑

i=1

RT
i ⊗ (Ei−1 − ÃLEi) ∈ R

LmK×(n+gm)r, (105)
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where ⊗ denotes the Kronecker tensor product. The matrices Ri and Ei are
defined in the following. The matrices

Ri ∈ R
r×K ∀ i = 1, · · · , L + g, (106)

are r-block rows in the U ∈ R
(L+g)r×K matrix. I.e. extracted from

U =






R1
...
RL+g




 . (107)

The matrices

Ei−1 ∈ R
Lm×(n+mg) ∀ i = 1, · · · , L + g, (108)

are defined as follows:

E0 =
[

OL 0Lm×m,
]
, EL+1 = 0Lm×(n+m), (109)

E1 =










0m×n Im×m

D 0m×m

DA 0m×m

...
...

DAL−2 0m×m










, E2 =










0m×n 0m×m

0m×n Im×m

D 0m×m

...
...

DAL−3 0m×m










, EL =










0m×n 0m×m

0m×n 0m×m

0m×n 0m×m

...
...

0m×n Im×m










.(110)

The matrix Im×m denotes the m × m identity matrix.

Proof 3.12 From (92) we have that B̃L is a linear function of B and E when
A and D are given. The matrix X in the LS problem (103) is defined from B̃LU
by using the identity

vec(AXB) = (BT ⊗ A)vec(X). (111)

2

Note that the number of columns in Y and U , which is defined in (100) and
(101), can be reduced to K =: (L + g)r by post-multiplying both (100) and
(101) with UT

J |L+g
. However, this does not affect the estimates of B and E

but will in general reduce the computation. Another variant, which should
be preferred for numerical reasons, is to define Y and U from the R matrix
provided by the RQ/LQ decomposition. This will also reduce the number of
columns to K =: (L + g)r in Lemma 3.14.
Note that only a matrix of size (n + gm)r × (n + gm)r has to be inverted (i.e.,
the matrix X TX in the LS solution (104)) in order to solve for the unknown
parameters in B and E. This method combined with the LQ decomposition is
found to be very efficient. The method in Lemma 3.14 require only that the
input is exciting of order n + gm, and hence, independent of the user specified
parameters L and J . This is consistent with the lower bound on the order

18



of persistence of excitation for consistent estimation of an nth order possibly
proper (g = 1) linear system.
Note that the alternative strategy of first solving for B̃L in (97) and then ex-
tracting B and E would require the inversion of an (L + g)r × (L + g)r matrix
UJ |L+gU

T
J |L+g

. This matrix may be singular for colored input signals, and hence
is not preferred.

4 Closed loop subspace identification

We have in Section 3.2 shown that the extended observability matrix OL+1 can
be estimated from the column space of the projection matrix ZJ |L+1 as defined
in (52). Let us look at the error term in this projection. We have

ZJ |L+1 = OL+1X
a
J + dZ, (112)

The error term dZ is given by

dZ = Hs
L+1(EJ |L+1/

[
UJ |L+g

W

]

)U⊥
J |L+g

= Hs
L+1EJ |L+1U

⊥
J |L+gW

T (WU⊥
J |L+gW

T )−1WU⊥
J |L+g,

≈ −Hs
L+1EJ |L+1/UJ |L+gW

T (WU⊥
J |L+gW

T )−1WU⊥
J |L+g, (113)

where W is defined in (65). We have in the last expression in (113) used that
EJ |L+1W

T /K ≈ 0 when the number of columns K tends to infinity. The
remaining projection in the error term is then EJ |L+1/UJ |L+g. This term will
also be approximately zero for open loop and many closed loop problems, which
will be pointed out in the following. However, the term EJ |L+1/UJ |L+g may be
non-zero and cause biased estimates for feedback systems in which the control
is directly proportional to the innovations noise. We will in the next sections
discuss how to overcome this problem. We will also stress that biased estimates
may be more reliable than estimates from an unbiased algorithm because the
variance may be small. This is illustrated in the section of examples.

4.1 Closed loop subspace identification: Using a filter in the

feeback loop!

Since we are allowing the inputs to be colored the question whether it is possible
with feedback in the inputs have to be pointed out. An external (dither) signal,
i.e., a reference signal, should be used to excite the system when collecting data
for subspace identification. The natural excitations from process disturbances
are often insufficient. The SID algorithm, e.g. DSR, works perfect for closed
loop deterministic systems. Our simulation results also shows that the results
may be good even for combined deterministic and stochastic systems, however,
the results depends on the dither signal or the signal to noise ratio. If the
signal to noise ratio is low then there may be a bias in the estimates. However,
the variance may be small. There may also exist an ”optimal” dither signal
which gives very accurate subspace estimates (small bias and small variance)
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even for systems with a large signal to noise ratio. This will be illustrated in
Example 7.4. A white noise or random binary signal in the reference usually
gives very good closed loop identification results. Furthermore, a minimum of
measurements noise is, as always, to be preferred in order to obtain good closed
loop estimates.
It is believed that SID of systems with state feedback or feedback from Kalman
filter states would work well, provided an external dither signal is introduced
in the loop. The reason for this is that the states are ”noise-free” and not
correlated with the innovations noise. There are no problems by using subspace
identification methods in these cases.
The key is to make the term EJ |L+1/UJ |L+g small, which is equivalent to making
the error term (39) small.
The (open loop) subspace identification methods may give biased estimates
for closed loop systems as in Figures 1 and 3 when the signal-to-noise ratio is
low. The reason for this is that the error term in (39) is not zero when the
future inputs, UJ |L+g−1, are correlated with the future noise, EJ |L. Most of
our simulations shows that the bias in the DSR algorithm, due to noisy closed
loop data, is less than the bias in the other algorithms as N4SID, SUBID (Van
Overschee and De Moor (1996)), MOESP (Verhagen (1994)).

h_p(z)
h_c(z)


r_k
 u_k
 y_k


-


v_k
 w_k


Figure 1: Standard feedback system with reference signal, rk, controller repre-
sented with uk = hc(z)(rk−yk) and the system represented with hp(z). Possibly
process and measurements noise are represented with vk and wk, respectively.

One of our solutions to the bias problem is to include a filter, e.g. a first
order low-pass filter, in the feedback path of the control system as illustrated
in Figure 2. This filter will reduce or eliminate the feedback problem when
using subspace identification algorithms. Hence, the input and output data,
uk and yk, can be used directly to identify a state space model of the system.
The reason for this is that the input is no longer directly proportional to the
measurements noise wk in the output yk = Dxk + wk (or the innovations ek

in the output yk = Dxk + ek). This solution to the feedback problem will be
illustrated in Example 7.3.
Note that the control system in Figure 2 is a special case of the more general
control configuration in Figure 3.
Note that SID algorithms are very useful for model predictive control in which
the control input signal often is the reference signal to some local controller
for the process. Hence, the SID algorithm are used to identify the closed loop
model from the reference signal to the output. In this case we do not have
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h_p(z)
h_c(z)


r_k
 u_k
 y_k


-


v_k
 w_k


h_f(z)


Figure 2: Feedback system with a filter in the feeback loop in order to elim-
inate problems with feeback in the data when using subspace identification
algorithms. Here, uk is the control/input signal, yk the output signal and rk,
is the reference signal. The controller is represented with uk = hc(z)(rk − ȳk)
where ȳk = hf (z)yk is the filtered output. The system is represented with the
transfer function hp(z). The controller is represented with the transfer function
hc(z) and the filter is represented with the transfer function hf (z). Possibly
process and measurements noise are represented with vk and wk, respectively.

h_p(z)


h_c(z)


r_k

h_r(z)


-


y_k
u_k


v_k
 w_k


r_k
r0_k


Figure 3: Alternative feedback system with reference signal, rk, controller rep-
resented with uk = rk−hc(z)yk and the system represented with hp(z). Possibly
process and measurements noise are represented with vk and wk, respectively.
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problems with feedback in the data.

4.2 Closed loop subspace identification: Using the controller

The knowledge of the controller or the reference signal can be used to obtain
consistent subspace identification algorithms for closed loop systems. Consider
a linear state space model of the controller in Figure 1, i.e.

xc
k+1 = Acx

c
k + Bc(rk − yk), (114)

uk = Dcx
c
k + Ec(rk − yk), (115)

where Ac ∈ R
nc×nc , Bc ∈ R

nc×m, Dc ∈ R
r×nc and Ec ∈ R

r×m is the state space
model matrices of the controller and xc

k ∈ R
n is the controller state vector. Note

also that the results which follows also holds for the control strategy in Figure
3.
We will in the following assume that the controller is linear and that the quadru-
ple (Ac, Bc, Dc, Ec) matrices in addition to the input and output data, uk and
yk, are known. One should also note that the linear controller matrices can
be exactly identified if rk, uk and yk are known. The problem of identify-
ing the controller is deterministic and one can in this case perfectly identify
(Ac, Bc, Dc, Ec) by using rk − yk as inputs and uk as outputs by using e.g. the
DSR subspace algorithm (provided that noise-free rk’s and uk’s are given).
Consider the following matrix equation obtained from the state space model
(114) and (115) of the controller in Figure 1, i.e.

UJ |L = Oc
LXc

J + Hc
L(RJ |L − YJ |L). (116)

We will now adopt the idea in Van Overschee and De Moor (1997) and define a
signal/matrix MJ |L from (116) which is orthogonal to the future noise matrix
EJ |L as

MJ |L
def
= UJ |L + Hc

LYJ |L = OLXc
J + Hc

LRJ |L (117)

The signal/matrix 117 was introduced by Van Overschee and De Moor (1997)
in order to solve the bias problem in the subspace identification algorithms.
Note also that a similar signal can be defined from the control system in Figure
3. The only difference is that the right hand side of (117) becomes RJ |L−OLXc

J

in this case. This matrix is also orthogonal to the future noise and the closed
loop subspace identification algorithm which will be presented in the following
thus holds for both control systems as presented in Figures 1 and 3. The main
point of introducing MJ |L is that

EJ |L/MJ |L = 0, (118)

which holds if EJ |L is orthogonal to both Xc
J and RJ |L.
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4.3 Closed loop subspace identification: Indirect method

We will in this section derive a consistent version of the closed loop subspace
identification algorithm which is presented in Van Overschee and De Moor
(1997). We have the following consistent projection lemma for closed loop
subspace system identification

Lemma 4.1 (Closed loop SID)
Given the following closed loop projection

ZJ |L+1 = (YJ |L+1/





MJ |L+g

U0|J
Y0|J



)M⊥
J |L+g (119)

Then, ZJ |L+1 is related to the extended observability matrix OL+1 as

ZJ |L+1 = T−1OL+1X
a
J , (120)

where T ∈ R
(L+1)m×(L+1)m is a lower block Toepliz matrix given by

T = I(L+1)m + Hd
L+1H

c
L+g when g = 1 (121)

T = I(L+1)m +
[

Hd
L+1H

c
L+g 0(L+1)m×m

]
when g = 0 (122)

Furthermore, the system order is given by

n = rank(ZJ |L+1). (123)

From the SVD

ZJ |L+1 = U1S1V
T
1 + U2S2V

T
2 , (124)

where the n large/dominant singular values are contained on the diagonal in S1

and the other zero/smaller singular values on the diagonal of S2. Furthermore,
U1 ∈ R

(L+1)m×n and U2 ∈ R
(L+1)m×((L+1)m−n).

From this we have the estimate

T−1OL+1 = U1. (125)

Furthermore, the ”autonomous” states are determined as Xa
J = S1V

T
1 .

Proof 4.1 A simple proof is given as follows. From (26) we have

YJ |L+1 = OL+1XJ + Hd
L+1UJ |L+g + Hs

L+1EJ |L+1. (126)

Adding Hd
L+1H

c
L+gYJ |L+g on both sides of (126) and using the definition in

(117) gives

TYJ |L+1 = OL+1XJ + Hd
L+1MJ |L+g + Hs

L+1EJ |L+1. (127)
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where T is as in (121) and (122). Since the matrix





MJ |L+g

U0|J
Y0|J



 is uncorrelated

(orthogonal) to the future noise matrix EJ |L+1 we have that

TZd
J |L+1 = OL+1X

d
J + Hd

L+1MJ |L+g (128)

where

Zd
J |L+1 =: YJ |L+1/





MJ |L+g

U0|J
Y0|J



 , (129)

and

Xd
J |L+1 =: XJ/





MJ |L+g

U0|J
Y0|J



 , (130)

The lower triangular matrix T is non-singular if Im + EEc is non-singular.
Hence,

Zd
J |L+1 = T−1OL+1X

d
J + T−1Hd

L+1MJ |L+g (131)

Post-multiplication of (131) with M⊥
J |L+g

proves (119) -(121).

Furthermore we have that

UT
2 Zd

J |L+1 = UT
2 T−1Hd

L+1MJ |L+g (132)

where U2 is the left singular vectors from the SVD of ZJ |L+1 which is related to
the ”zero/small” singular values. Equation (132) is obtained by pre-multiplying
(131) with UT

2 and using that T−1OL+1 = U1 and UT
2 U1 = 0.

Equation (132) is a linear equation of the elements in the lower block triangular
Toepliz matrix T−1Hd

L+1. The solution to this problem is an important step in
the closed loop subspace algorithm and therefore needs further discussion. In
order to do this we write (132) as

Y = UKMJ |L+g, (133)

where

Y =: UT
2 Zd

J |L+1 (134)

U =: UT
2 (135)

K def
= T−1Hd

L+1 ∈ R
(L+1)m×(L+g)r (136)

The matrix K is a lower block triangular Toepliz matrix with m × r blocks Ki

∀ i = 1, . . . , L + 1. Hence, we can solve (132) (or equivalent (133) in a least
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squares optimal sense for the parameters in K. An algorithm for doing this is
presented in Van Overschee and De Moor (1996b) Appendix C.
The problem of solving (132) is very similar to the least squares problem in
Section 3.4 for determining B and E for the open loop subspace problem.
Since Hc

L+g is known the matrix Hd
L+1 is simply obtained from K as (when

g = 1)

Hd
L+1 = K(I(L+1)r − Hc

L+gK)−1. (137)

Finally, the extended observability matrix of the system can be obtained as
(when g = 1)

OL+1 = (I(L+1)m + Hd
L+1H

c
L+g)U1. (138)

The system matrices A and D are then computed from OL+1. The system
matrices B and E are computed from Hd

L+1 and OL.
The stochastic part of the system is determined very similar to the theory in
Section 3.3. The difference is that the projection matrix now is given by

Zs
J |L+1 = YJ |L+1 − YJ |L+1/





MJ |L+g

U0|J
Y0|J



 = T−1Hs
L+1EJ |L+1 (139)

The projection matrices ZJ |L+1, Zd
J |L+1 and Zs

J |L+1 can effectively be computed

by the LQ/QR decomposition.
The above ideas is among other details used to construct a MATLAB function,
dsr cl.m, for consistent closed loop subspace identification.

4.4 Closed loop subspace identification: Direct method

A drawback with the above algorithm is that T and Hd
L+1 have to be identified

before the extended observability matrix OL+1 and the system matrices A and
D could be identified. We will in this section present a solution to the closed
loop subspace identification problem which is more consistent with the DSR
subspace algorithm in which OL+1 and A and D is identified directly in a first
step. We have the following lemma

Lemma 4.2 (Direct closed loop SID)
The extended observability matrix OL+1 is obtained from the following projection

ZJ |L+1 = Zd
J |L+1(MJ |L+g − Hc

L+1Z
d
J |L+1)

⊥

= Zd
J |L+1(UJ |L+g + Hc

L+1Z
s
J |L+1)

⊥ = OL+1X
a
J (140)

where Zd
J |L+1 and Zs

J |L+1 are defined in (129) and (139), respectively.

Furthermore, B and E (or also Hd
L+1) can be obtained from

Zd
J |L+1 = OL+1X

d
J + Hd

L+1(MJ |L+g − Hc
L+1Z

d
J |L+1) (141)

or from (as in the standard DSR algorithm) the equation

Zd
J+1|L+1 − ÃLZJ |L = B̃L(MJ |L+g − Hc

L+1Z
d
J |L+1) (142)
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Proof 4.2 From (128) we have that

(I + Hd
L+1H

c
L+g)Z

d
J |L+1 = OL+1X

d
J + Hd

L+1MJ |L+g. (143)

Rearranging (143) gives

Zd
J |L+1 = OL+1X

d
J + Hd

L+1(MJ |L+g − Hc
L+gZ

d
J |L+1) (144)

The closed loop subspace algorithm which is presented in this section is very
similar to the open loop subspace identification algorithm which is presented in
Section 3. The only difference is that the projection matrices are modified to
incorporate the Markov parameters of the controller (the Toepliz matrix Hc

L+g.

5 A new subspace identification method for closed

and open loop systems

It was presented in Di Ruscio (1995) and proved in Di Ruscio (2001) that the
noise innovation process could be identified directly from the data in a first
step. This approach is valid for both open and closed loop systems.
We will in the following consider a closed loop system in which it make sense to
assume that E = 0. Putting g = 0 and letting J → ∞ in Equation ( 27) gives

YJ |1 = D
[

C̃d
J C̃s

J

]
[

U0|J
Y0|J

]

+ FEJ |1. (145)

Hence, the innovations can simply be identified as (for g = 0)

Zs
J |1 = FEJ |1 = YJ |1 − YJ |1/

[
U0|J
Y0|J

]

(146)

This result is also obtained directly from Lemma 3.9, and Di Ruscio (2001). It
is clear that the above approach is valid for both open and closed loop systems
since the past data, U0|J and Y0|J , is uncorrelated with the future noise EJ |1.
The innovations is known and the DSR algorithm is used directly with the
innovations as extra inputs in order to identify the ”deterministic” model

xk+1 = Axk +
[

B K
]
[

uk

εk

]

, (147)

yk − εk = Dxk. (148)

We now simply solve a deterministic subspace identification problem in order
to obtain the system matrices A, B, K and D. Any efficient subspace method,
e.g. the DSR method as presented earlier in this paper, can be used.
The DSR algorithm for closed loop systems is sketched simply as follows:

1. From the known input and output data uk and yk ∀ k = 0, 1, . . . , N − 1
and a large past horizon, J , the future innovations matrix Zs

J |1 = FEJ |1 is

computed from (146). The projection involved can be computed directly
from the definition or preferably from a QR decomposition.
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2. The innovations sequence εk ∀ k = J, J+1, . . . , N−1 in the Kalman filter
is given directly from the corresponding data in Zs

J |1. From the known
innovations sequence we form the Hankel matrix EJ |L+1.

3. Define the known input and output data sequence uk and yk ∀ k = J, J +
1, . . . , N − 1 and form the matrices UJ |L and YJ |L+1.

4. The data from step 2 and 3 and a specified future horizon, L, are used
to identify the state space model by an efficient subspace identification
method. As a rule of thumb, chose L small such that 1 ≤ n ≤ Lm. The
theory in Sections 3.2 and 3.4 can be used directly by zeroing out the
matrices U0|J and Y0|J from the projections.

Hence, we simply obtain the model matrices in the Kalman filter from the
projection equations

ZJ |L+1 = YJ |L+1

[
UJ |L
EJ |L+1

]⊥
≈ OL+1X

a
J (149)

which gives OL+1, A and D and

YJ+1|L = ÃLYJ |L +
[

B̃L C̃L

]
[

UJ |L
EJ |L+1

]

(150)

gives B and K according to the theory in Section 3.4. This algorithm is imple-
mented in the DSR e MATLAB function in the D-SR Toolbox for MATLAB.

6 Further remarks

6.1 Choice of algorithm parameters

There are two parameters in the algorithm, i.e., L and J . L is interpreted as
the identification-horizon used to predict the number of states. J is interpreted
as the horizon (into the past) used to define instruments from the data which
are used to remove noise. The system order, n, which is specified or identified,
is bounded by the user-specified parameter L, i.e. so that, 1 ≤ n ≤ mL where
m is the number of outputs. Hence, Lm singular values are computed by the
algorithm and the user may chose the system order, n, by inspection of the, n,
non-zero singular values.
A rule of thumb is that L should be chosen as small as possible if the inputs are
poorly exciting. The minimum identification-horizon, Lmin, so that the pair
(D, A) is observable and rank(OLmin

) = n is bounded by, ⌈ n
m
⌉ ≤ Lmin ≤ n −

rank(D)+1, where ⌈·⌉ is the ceiling function, i.e., rounding towards plus infinity.
If the outputs are independent, then, we suggest to use Lmin = n−m+1 when
n ≥ m and Lmin = 1 when n = m. If the inputs are rich, e.g. white, then
this point is not critical. In practice, it is suggested that model validation
on independent data is taken into consideration when choosing the ”optimal”
settings for L.
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The past horizon, J , may for combined deterministic and stochastic systems
and for pure stochastic systems usually be chosen as J = L + 1 or J = L.
Note that the estimates of C and the Kalman filter gain matrix K = CF−1

usually becomes better when J increases. For pure deterministic systems we
may chose J = 1. The instruments Y0|J and U0|J can also be removed from the
projections, i.e., and putting J = 0, in this case.
The theory in this paper is the basis for the D-SR Toolbox for MATLAB which
are available upon request. The toolbox consists of MATLAB functions for
subspace system identification of both open and closed loop systems.

6.2 Choice of input signal

The subspace identification methods tends to be more sensitive to the input
signal compared to e.g, the Prediction Error Method (PEM). This means that
there may exist colored input signals which gives subspace estimates which are
as optimal (efficient and consistent) as the PEM estimates. On the other side
there may exist colored input signals where the subspace methods gives poorer
results compared to the PEM. An optimal experiment for the subspace methods
is in general not a white noise input, but rather a colored input signal where the
frequency spectrum is optimized to excite the parameters in the system as well
as possible. Our experience is also that an input signal which are minimizing
the condition number of the Hankal matrix U0|J or UJ |L+g, is usually not an
optimal input signal.

6.3 N4SID

The N4SID algorithms in Van Overschee and De Moor (1994) are using an
oblique-projection

Oi = Yi|iU
⊥
i|iW

T
p (WpU

⊥
i|iW

T
p )−1Wp, (151)

Wp =

[
U0|i
Y0|i

]

, (152)

for the identification of the extended controllability matrix Oi, i.e., Oi is esti-
mated from the column space of Oi in (151), e.g. using the SVD. Comparing
(64) with (151) shows that the extra projection matrix U⊥

i|i are missing on the

left hand side of (151). Hence, we conclude that in general

Oi 6= OiX
a
i . (153)

The consequence of this is that the subspace identification theorems in Van
Overschee and De Moor (1994), (1996), (1997) which are using the oblique
projection, to our understanding, are wrong.
The extra projection matrix U⊥

i|i on the left hand side of (151) removes the
influence of the future inputs on the future outputs, and is necessary in order to
obtain accurate/consistent subspace estimates for colored input signals. Hence,
a consistent projection is therefore

Zi|i = OiU
⊥
i|i = OiX

a
i U⊥

i|i. (154)
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Hence, the extra projection can not be considered as a weighting matrix but
as a projection matrix. One should note that the parameter i used by N4SID
is related to the parameter L in DSR as i = L + 1. Furthermore, in N4SID
the past horizon is put equal to the future horizon. Hence, this corresponds to
putting J = L + 1 = i in DSR.

7 Numerical examples

7.1 Example 1

Given the system (1) and (2) with the following matrices and vectors

A =

[
0 1

−0.7 1.5

]

, B =

[
0.25
0.625

]

, C =

[
0.5
0.5

]

, (155)

D =
[

1 0
]
, E = 1, F = 1. (156)

The following colored input signals where used for identification

u1
k = sin(k) + sin(

k

2
), (157)

u2
k = sin(k) + sin(

k

2
) + sin(

k

3
), (158)

u3
k = withe noise with variance E(u2

k) = 1. (159)

The number of samples was N = 1000. The system was simulated 100 times,
each time with the same input but with a different noise realization ek. However,
with the same covariance E(e2

k) = 1. The DSR parameters where chosen as
L = 2, J = 3. The model structure parameter where g = 1. The poles of the
100 identified system matrices are illustrated in Figure 4, 5 and 6. From this
we conclude that the method presented in this paper is almost as efficient as
the PEM method, for the inputs which are considered. However, the N4SID
oblique-method gives an unacceptable bias in the pole estimates for input u1

k,
i.e., because the estimated poles are unstable. From Figure 5 we see that the
bias is eliminated but the results from N4SID are highly uncertain. However,
the results from N4SID are nearly the same as DSR for the white input signal
u3

k. We also see that the variance of the subspace estimates may be smaller for
a colored input signal, Figure 5, than for the white noise input, Figure 6.

7.2 Example 2

We consider the following system

xk+1 = Axk + Buk + Cvk, (160)

yk = Dxk + wk, (161)

where the system matrices are the same as in Example 7.1. The process noise,
vk, and the measurements noise, wk, are both white noise with standard devia-

tion
√

E(v2
k) =

√
0.02 = 0.1458 and

√

E(w2
k) =

√
0.002 = 0.0447, respectively.
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Figure 4: Identified poles for a Monte carlo simulation. The exact pole is
marked with a cross. Input signal u1

k where used.
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Figure 5: Identified poles for a Monte carlo simulation. The exact pole is
marked with a cross.Input signal u2

k where used.
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Figure 6: Identified poles for a Monte carlo simulation. The exact pole is
marked with a cross.Input signal u3

k where used in this case.

The system is operating in closed loop. The input to the system is generated
by the following discrete time PI-controller

uk = Kp(rk − yk) + zk, (162)

where the controller state, zk, is defined by

zk+1 = zk +
Kp

Ti

(rk − yk). (163)

The proportional constant is Kp = 0.2, the integral time is Ti = 5 and the
reference, rk, is taken as the binary signal in Figure 7.
The number of samples was N = 1000. The system was simulated 100 times,
each time with the same reference, rk, but with a different noise realizations
vk and wk, but with the same variance. The DSR parameters where chosen as
L = J = 3 and the structure parameter where g = 0. The subspace algorithms
works perfect in the deterministic case. However, the algorithm gives a small
bias in the estimates in the case of noise. The bias is negligible for this example.
The pole estimates are presented in Figure 8.

7.3 Example 3

Consider the same closed loop example as in Example 2. We will in this exam-
ple illustrate the bias-problem when using subspace identification algorithms
directly from input and output data collected in closed loop (Figure 1). Fur-
thermore, we will illustrate that the feedback problem can be eliminated by
including a low-pass filter in the feedback as in Figure 2.
The process noise, vk, and the measurements noise, wk, are both white noise

with standard deviation
√

E(v2
k) =

√
0.05 = 0.2236 and

√

E(w2
k) =

√
0.01 =
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Figure 7: The reference signal, rk, the input, uk and the output yk for two
particular noise realizations vk and wk, used in Example 7.2.
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Figure 8: The pole estimates from the closed loop data as described in Example
7.2.
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0.1, respectively. The pole estimates after a Monte carlo simulation is presented
in Figure 9. We can clearly see a bias in the estimates from the (open loop)
subspace identification algorithms. The bias in the DSR estimates is smaller
than the bias in the estimates from both SUBID (Van Overschee and De Moor
(1996)) and N4SID. This is also the conclusion from many other simulation
experiments.

0.6 0.7 0.8 0.9
0.1

0.2

0.3

0.4

0.5

0.6
Eigenvalues: DSR

0.6 0.7 0.8 0.9
0.1

0.2

0.3

0.4

0.5

0.6
Eigenvalues: SUBID

0.6 0.7 0.8 0.9
0.1

0.2

0.3

0.4

0.5

0.6
Eigenvalues: PEM

0.6 0.7 0.8 0.9
0.1

0.2

0.3

0.4

0.5

0.6
Eigenvalues: N4SID

Figure 9: The pole estimates from the closed loop data as described in Example
7.3. The control system is as in Figure 1 with the same reference signal as in
Figure 7.

Consider now the feedback system in Figure 2. We are using a PI-controller as
in Example 7.2 where the filtered output is used as input to the controller. The
controller equations are as follows.

uk = Kp(rk − ȳk) + zk, (164)

where the controller state, zk, is defined by

zk+1 = zk +
Kp

Ti

(rk − ȳk). (165)

The filter is a 1. order low-pass filter of the form

ȳk+1 = ȳk + Kf (yk − ȳk)

= (1 − Kf )ȳk + Kfyk, (166)

with filter constant Kf = 0.1. The initial filter output is taken as ȳ0 = y0. Pole
estimates after a Monte Carlo simulation is illustrated in Figure 10. We see
that the pole estimates now are consistent.

7.4 Example 4

We will in this example search for an optimal experiment in the reference.
Consider the reference rk = sin(ωk) for varying frequency ω. The following
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Figure 10: The pole estimates from the closed loop data as described in Example
7.3 with a filter in the feedback. The control system is as in Figure 2.

investigation shows that the bias in the DSR pole estimates is a function of the
frequency and that the bias reach a minimum for a particular frequency.
The reference signal which gave the smallest bias in the pole estimates is for
this example found to be for ω = 1

1.526 , i.e.,

rk = sin(
1

1.526
k). (167)

The pole estimates from an Monte carlo experiment is illustrated in Figure 11.
The results are very interesting because, as we see, the pole estimates from the
DSR subspace identification method is more reliable than the pole estimates
from the prediction error method PEM.
The process noise, vk, and the measurements noise, wk, are both white noise

with standard deviation
√

E(v2
k) =

√
0.1 = 0.01 and

√

E(w2
k) =

√
0.1 = 0.01,

respectively. The DSR parameters is L = 5, g = 0 and J = 6.

7.5 Example 5

Consider the following system

xk+1 = 0.9xk + 0.5uk + 0.6ek (168)

yk = xk + ek (169)

with ek white noise with unit variance. The controller is taken as

uk = Kp(yk − rk), (170)

with Kp = 0.6 and a reference signal

rk = sin(0.5k) + sin(k). (171)
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Figure 11: The pole estimates from the closed loop data as described in Example
7.4 with reference signal rk = sin(k/1.526). The control system is as in Figure
1.

A Monte carlo simulation study is performed with N = 2000 data points and
M = 100 different noise realizations. The results are illustrated in Figures 12
and 13. As we can see, both DSR e and PEM gives consisten results. It shows
also that the subspace method, DSR e, is as efficient that PEM is. The DSR
function results in a smaller bias than MOESP. The parameters L = 1 and
J = 6 was used for the DSR e function. Parameters L = 2 and J = 6 for DSR
and i = L + 1 = 3 for MOESP. The DSR e function is implemented along the
lines in Section 5.
The DSR algorithm gives usually less bias than MOESP for closed loop data,
se Figures 12 and 13. It is very interestin that the DSR e algorithm gives
parameter estimates which are as optimal as the corresponding PEM estimates.

8 Conclusion

The extended observability matrix OL+1 can be computed directly from the
column space of a projection matrix ZJ |L+1, which is defined in terms of the
known data. There are in general two projections involved in order to define
ZJ |L+1. One projection is used to remove the effect of noise and one projection is
used to remove the effect of future inputs from the future outputs. A necessary
condition for a consistent estimate of OL+1 is that the number of columns K
in the data matrices tends to infinity.
The states are not needed in order to compute the extended observability matrix
and, hence, to identify the system dynamics, i.e., the number of states n and
the system matrices A and D.
An additional condition for a consistent state estimate is that the past horizon J
has to tend to infinity. Furthermore, for colored input signals both the extended
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Figure 12: The pole estimates from the closed loop data as described in Example
7.5 with reference signal rk = sin(k) + sin(0.5k). The control system is as in
Figure 1.
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Figure 13: The estimates of the B parameter from the closed loop data as
described in Example 7.5 with reference signal rk = sin(k) + sin(0.5k). The
control system is as in Figure 1.
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observability matrix OL and the lower block triangular Toepliz matrix Hd
L has

in general to be known in order to properly computing the states.
The stochastic part of the model, i.e., the Kalman filter gain matrix and the
innovations covariance matrix can be identified directly from the data, i.e. from
the projection matrix Zs

J |L+1, without solving any Riccati or Lyapunov matrix
equations.
The deterministic part of the model can be identified from an optimal least
squares problem defined from the projection matrix Zd

J |L+1, the extended ob-
servability matrix OL+1, A and D.
Furthermore the necessary projections, ZJ |L+1, Zd

J |L+1 and Zs
J |L+1, which are

needed in order to compute a complete state space model realization for the
sixtuple matrices (A, B, D, E, C, F ) (and/or K and ∆ = E(εkε

T
k )), can be com-

puted throug a numerically stable LQ decomposition of







UJ |L+g

U0|J
Y0|J
YJ |L+1







. However,

it is in general faster to compute ZJ |L+1, Zd
J |L+1 and Zs

J |L+1 directly from the
definitions. This means that the algorithm both can be implemented as an
correlation based method and a square root based method.
Finally, a method for subspace identification of closed loop systems which gives
unbiased estimates is presented. Simulation results shows that the estimates are
as efficient as those from the prediction error method, however, the estimates
are somewhat dependent of the parameters L and J .
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