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1 Introduction

The Unscented Kalman Filter (UKF) algorithm is a variant of the Extended Kalman
Filter (EKF) algorithm for non-linear systems. The UKF algorithm is a derivative free
Kalman filter algorithm which is based on the Unscented Transform (UT) for computing
the mean and covariance matrix of a variable, say y, which is given by a non-linear function
y = g(x) where the mean and covariance matrix of the argument x are given. The EKF is a
”direct” extension of the Kalman filter for linear systems to on non-linear system models
where the linear system matrix A and the linear measurements matrix C are replaced
by the Jacobian matrices, i.e., A := ∂f

∂xk
and C := ∂h

∂xk
, respectively. These Jacobian

matrices may be calculated analytically but it is well known that the Jacobians may be
calculated numerically, e.g. by using the explicit Euler method ore by its central difference
approximations. Hence, the EKF may be implemented with evaluations of the non-linear
functions only. hence, it may be of interest to compare the UKF and EKF algorithms,
both with respect to accuracy on some particular examples and to computational aspects.

It is reported that the UKF algorithm gives the same result as the Kalman filter for
linear systems and that the UKF may give better results than the EKF for non-linear
systems, but this is not the case in general.

This work is inspired by the work by Sarkka (2007) and some of the material is taken
and translated to the notation used in this note.

2 Model description

Given a possibly nonlinear state space model

xk+1 = f(xk) + vk, (1)
yk = h(xk) + wk, (2)

where vk and wk are white Gaussian distributed process and measurements noise, respec-
tively. The covariance matrices are V = E(vkv

T
k ) and W = E(wkw

T
k ), which are assumed
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to be known or specified. In some circumstances the covariance matrices may be time
varying, e.g., Vk := V and Wk := W . We will assume that the process noise, vk, and the
measurements noise wk are un-correlated, i.e., E(vkw

T
k ) = 0.

3 On the filter matrix equations

We will in this section take a view on some central covariance matrix equations which are
used in the EKF and derive the corresponding covariance matrix equations used in the
UKF.

3.1 Covariance matrix equations

For the Kalman filter we may formulate the following covariance matrix equations. The
a-posteriori covariance matrix, X̂k = E((xk − x̂k)(xk − x̂k)T ), may be formulated as a
function of the a-priori covariance matrix, X̄k = E((xk − x̄k)(xk − x̄k)T ), and the Kalman
filter gain matrix, Kk, as

X̂k = X̄k −KkDX̄k. (3)

The Kalman filter gain matrix is given by

Kk = X̄kD
T (DX̄kD

T +W )−1. (4)

From Eq. (4) we have that the term DX̄k in Eq. (3) may be expressed as

DX̄ = (X̄kD
T )T = (DX̄kD

T +W )KT
k , (5)

where X̄kD
T = Kk(DX̄kD

T +W ) is found from Eq. (4).
Combining Eqs. (3) and (5) gives the alternative formulation

X̂k = X̄k −Kk(DX̄kD
T +W )KT

k . (6)

Furthermore, notice, and define the following. Define the cross covariance matrix between
xk and yk as

Ck = X̄kD
T = E((xk − x̄k)(xk − x̄k)T )DT = E((xk − x̄k)(yk − ȳk)T ). (7)

Define the matrix

Sk = DX̄kD
T +W = S̃k +W, (8)

where S̃k is the covariance matrix of the output yk, which may be expressed as

S̃k = DX̄kD
T = E((yk − ȳk)(yk − ȳk)T ). (9)

Using the definitions given by Eqs. (7)-(9) shows that the covariance matrix Eqs. (4) and
(5) may be written as

Kk = CkS
−1
k . (10)
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and

X̂k = X̄k −KkSkK
T
k , (11)

where S̃k is the covariance matrix of the output yk and given by Eq. (9).
Eq. (10) for the Kalman filter gain matrix, and Eq. (11) for the a-posteriori state

covariance matrix are of central importance and used in the UKF algorithm.
The remaining part in the UKF algorithm is to compute the covariance matrices X̄k,

S̃k and the cross covariance matrix Ck. This is done by using the so called Unscented
Transform (UT). The covariance matrix X̄k and the a-priori state estimate x̄k are found
by using the UT algorithm on the non-linear function f(·). The covariance matrix S̃k, the
cross covariance matrix Ck and the predicted (mean) output ȳk are found by using the
UT algorithm on the non-linear measurement function h(·).

The UKF algorithm is presented in Section 5, but first we give a view of the EKF in
the next Section 4.

3.2 On the a-posteriori covariance matrix equation

Consider the a-posteriori state estimate

x̂k = x̄k+1 +Kk(yk − ȳk). (12)

This gives

xk − x̂k = xk − x̄k −Kk(Dxk + wk −Dx̄k). (13)

An expression for the a-posteriori state covariance matrix may be found from

(xk − x̂k)(xk − x̂k)T =
(xk − x̄k −Kk(Dxk + wk −Dx̄k))(xk − x̄k −Kk(Dxk + wk −Dx̄k))T (14)

Evaluating the right hand side of Eq. (14) and taking the mean gives

X̂k = (I −KkD)X̄k(I −KkD)T +KkWKT
k (15)

Eq. (15) is frequently used in the KF and EKF algorithm due to its numerical stability
properties.

Some alternative formulations of Eq. (15) may be deduced as follows. From Eq. (15)
we have

X̂k = X̄k − X̄kD
TKT

k −KkD
T X̄k +KkD

T X̄kD
TKT

k +KkWKT
k , (16)

which gives

X̂k = X̄k − X̄kD
TKT

k −KkD
T X̄k +Kk(DX̄kD

T +W )KT
k . (17)

from the expression for the Kalman filter gain matrix Kk = X̄kD
T (DX̄kD

T + W )−1 we
find that X̄kD

T = Kk(DX̄kD
T + W ) and this may be used to show that the sum of the

2nd and 3rd terms on the right hand side of Eq. (17) may be expressed as

X̄kD
TKT

k +KkD
T X̄k = 2Kk(DX̄kD

T +W )KT
k . (18)
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Using Eq. (18) in Eq. (17) gives an alternative formulation also used in the UKF algorithm

X̂k = X̄k −Kk(DT X̄kD
T +W )KT

k . (19)

Using that Kk(DX̄kD
T +W ) = X̄kD

T we find the alternative

X̂k = X̄k − X̄kD
TKT

k = X̄k −KkDX̄k. (20)

4 The Extended Kalman Filter

The Extended kalman Filter (EKF) algorithm, Jazwinski (1970), may be formulated in
different ways. For the sake of comparison with the UKF, we will in this section give a
presentation of the EKF which is as close as the UKF algorithm as possible, in order to
point out the main differences. The EKF algorithm may be formulated as follows

1. Given initial values for the predicted (a-priori) state estimate, x̄k, and its covariance
matrix X̄k at startup, e.g. at time k = 0.

2. Compute the predicted measurement/output

ȳk = h(x̄k), (21)

where the covariance matrix of the output, yk, is S̃k = E((yk − ȳk)(yk − ȳk)T ), and
the cross-covariance matrix is Ck = E((xk − x̄k)(yk − ȳk)T ).

Compute the Jacobian of the non-linear measurements function h(·), i.e.,

Dk = ∂h(xk)

∂xT
k

∣∣∣
x̄k

. (22)

Then we have that the covariance matrix of the output, S̃k, and the cross covariance
matrix between xk and yk, i.e.,Ck are given by

S̃k = DkX̄kD
T
k , (23)

Ck = X̄kD
T
k . (24)

Furthermore, the intermediate matrix DX̄kD
T +W = Sk is then given by

Sk = S̃k +W, (25)

which is used for computing the Kalman filter gain matrix in the next step of the
EKF algorithm.

3. Compute the EKF gain matrix

Kk = CkS
−1
k . (26)

4. Compute the a-posteriori state estimate

x̂k = x̄k +Kk(yk − ȳk), (27)

and the a-posteriori state covariance matrix

X̂k = X̄k −KkSkK
T
k . (28)
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5. Compute the updated state prediction (a-priori state estimate) using the model

x̄k+1 = f(x̂k). (29)

Compute the Jacobian (transition) matrix of the non-linear measurements function
f(·), i.e.,

Ak = ∂f(xk)

∂xT
k

∣∣∣
x̄k

, (30)

and the intermediate expression

X̃k+1 = AkX̄kA
T
k , (31)

and the a-priori state covariance matrix update

X̄k+1 = X̃k+1 + V. (32)

We will in the next Section 5 give a presentation of the UKF algorithm. As we will
see, the main difference between the EKF and the UKF lies in steps 2 and 5 of the above
EKF algorithm.

5 The Unscented Kalman Filter

In terms of the Unscented Transform, i.e., the function UT(·), the UKF algorithm may be
formulated as follows

1. Given initial values for the predicted (a-priori) state estimate, x̄k, and its covariance
matrix X̄k at startup, e.g. at time k = 0.

2. Compute the predicted measurement/output[
ȳk, S̃k, Ck

]
= UT (h(·), x̄k, X̄k), (33)

where the covariance matrix is S̃k = E((yk− ȳk)(yk− ȳk)T ), and the cross-covariance
matrix is Ck = E((xk − x̄k)(yk − ȳk)T ). Then we have the term DX̄kD

T +W as

Sk = S̃k +W. (34)

3. Compute the UKF gain matrix

Kk = CkS
−1
k . (35)

4. Compute the a-posteriori state estimate

x̂k = x̄k +Kk(yk − ȳk), (36)

and the a-posteriori state covariance matrix

X̂k = X̄k −KkSkK
T
k . (37)

5. Compute the updated state prediction (a-priori state estimate) using the model and
the UT [

x̄k+1, X̃k+1

]
= UT (f(·), x̂k, X̂k) (38)

and the a-priori state covariance matrix update

X̄k+1 = X̃k+1 + V. (39)
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6 The unscented transform

The UKF is based on a statement ”that it is easier to approximate a Gausian probability
distribution than it is to approximate an arbitrarily non-linear function”. Instead of
linearizing and calculating the Jacobian matrices Dk = ∂h

∂xT
k

|x̄k
and Ak = ∂f

∂xT
k

|x̂k
, the UKF

is using a deterministic approach to calculate the mean and covariance of a variable. This
deterministic approach is denoted the Unscented Transform (UT). In the UT usually 2n+1
discrete points, denoted sigma points, are used to approximate the continuous normal
Gaussian probability distribution (Gaussian function). A more crude approximation are
using n+ 1 sigma points.

Consider that the a-priori state estimate, x̄k, is known. Then a set of 2n + 1 points,
on and around x̄k is chosen. These 2n + 1 perturbations ore vectors around the mean
(a-priori estimate) are denoted sigma points. These 2n+ 1 deterministically chosen sigma
points is then propagated through the non-linear functions f(·) and h(·) and the mean
and covariance of the transformed variable are estimated from them.

Consider a random Gaussian normal distributed variable xk ∈ Rn with mean x̄k and
covariance matrix X̄k ∈ Rn×n formally defined as xk ∼ N(x̄k, X̄k) where N(·) means a
Gaussian normal distribution. Assume that a new random variable yk is obtained from a
non-linear transformation of the random variable xk as

yk = g(xk), (40)

where g(·) ∈ Rm is a non-linear function, i.e., a non-linear mapping of the n-dimensional
vector xk to the transformed random vector yk ∈ Rm. The transformed variable yk is also
normal distributed and the joint probability distribution of xk and yk is described by the
normal distribution [

xk

yk

]
∼ N(

[
x̄k

ȳk

]
,

[
X̄k Ck

CT
k S̃k

]
). (41)

Here ȳk and S̃k = E(yk − ȳk)((yk − ȳk)T are the mean and the covariance matrix of yk,
respectively. Furthermore, Ck = E(xk − x̄k)((yk − ȳk)T is the cross covariance matrix
between xk and yk.

The UT is an algorithm to estimate the mean ȳk and the covariance matrices Ck and
S̃k in the joint normal distribution Eq. (41). Based on the above definitions we present
the UT as a function of the form[

ȳk, S̃k, Ck

]
= UT (g(·), x̄k, X̄k), (42)

where the mean ȳk and the covariance matrices Ck and S̃k are calculated by the UT from
given mean x̄k and covariance matrix X̄k and the non-linear function Eq. (40).

There are initially three parameters, α,β and κ, which are chosen in the UT. Common
choices for these parameters are

α = 0.001, β = 2, κ = 0. (43)

Define a scaling parameter λ as

λ = α2(n+ κ)− n, (44)
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and the square root of the scaled covariance matrix (n+ λ)X̄k, i.e.,

L = ((n+ λ)X̄k)
1
2 , (45)

where L is the square root of (n + λ)X̄k satisfying LLT = (n + λ)X̄k. The square root
matrix L may be computed by the transpose of the Cholesky decomposition as

LT = chol((n+ λ)X̄k)). (46)

If the Cholesky decomposition is used then the matrix L is the lower triangular square
root of the scaled covariance matrix (n + λ)X̄k. The Cholesky decomposition is to be
preferred for the calculation of the square root matrix L. Notice that it is possible to scale
with

√
n+ λ after the Cholesky decomposition

From the square root covariance matrix L we form the 2n + 1 sigma points (vectors)
and store these vectors in a matrix X̃ ∈ Rn×2n+1, i.e.,

X̃ =
[
x̃1, x̃2 · · · x̃2n+1

]
(47)

where the sigma points (vectors) are distributed around the mean x̄k as follows

x̃1 = x̄k (48)
x̃i = x̄k + li ∀ i = 1, . . . , n (49)
x̃1 = x̄k − li−n ∀ i = n+ 1, . . . , 2n (50)

where li is the ith column in the square root matrix, L =
[
l1 · · · li · · · ln

]
. The

matrix of sigma points (vectors) may be formulated directly as the matrix

X̃ =
[
x̄k, x̄k11×n + L x̄k11×n − L

]
, (51)

where 11×n is the 1 × n vector of ones, i.e., 11×n =
[

1 1 · · · 1
]

and then hence
x̄k11×n =

[
x̄k x̄k · · · x̄k

]
.

from this we see that first sigma vector is the mean, i.e., x̃1 = x̄k and n sigma points
(vectors) distributed above (positive) the mean and n sigma points (vectors) below (neg-
ative) the mean.

Each of the 2n+ 1 sigma points (vectors) are then transformed through the non-linear
function os

yi = g(x̃i) ∀ i = 1, . . . , 2n+ 1 (52)

The mean ȳk are then computed as

ȳk ≈
2n+1∑
i=1

wm
i yi (53)

and the covariance matrices S̃k and Ck as

S̃k = E((yk − ȳk)(yk − ȳk)T ) ≈
2n+1∑
i=1

wc
i (yi − ȳk)(yi − ȳk)T (54)

Ck = E((xk − x̄k)(yk − ȳk)T ) ≈
2n+1∑
i=1

wc
i (xi − x̄k)(yi − ȳk)T (55)
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In Eq. (53) the parameters wm
i ∀ i = 1, . . . , 2n + 1 is the weights for the mean.

Similarly, wc
i ∀ i = 1, . . . , 2n + 1 in Eqs. (54)-(55) are the weights for the covariance

matrices. They are defined as follows

wm
1 =

λ

n+ λ
, wm

i =
1

2(n+ λ)
∀ i = 2, . . . , 2n+ 1 (56)

and

wc
1 =

λ

n+ λ
+ (1− α2 + β), (57)

wm
i =

1
2(n+ λ)

∀ i = 2, . . . , 2n+ 1 (58)

We notice that the weights for the mean, wm
i , and the weights for the covariance matrices,

wc
i , are equal, except for i = 1.
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