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Abstract

This paper presents a new optimal PI/PID controller tuning algorithms for low-order plus time-delay processes via LQR approach.
A new criterion for selection of the Q and R matrices is proposed which will lead to the desired natural frequency and damping ratio of
the closed-loop system. The examples with various dynamics are included to demonstrate the e!ectiveness of the tuning algorithms
and show signi"cant improvement over the existing PID tuning methods. The robustness property of the tuning algorithms is also
analyzed, and it is shown that the LQR system is robustly stable for the small modeling error. ( 2000 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Proportional-Integral-Derivative (PID) controller has
remained as the most commonly used controllers in
industrial process control for 50 yr even though great
progress in control theory has been made over the peri-
od. This is because it has a simple structure and is easily
understood by the control engineers (Luyben, 1990). As
early as 1942, Ziegler and Nichols (1942) proposed the
"rst PID tuning method and surprisingly it is still widely
used in practice. However, high performance is always
the design target in industrial control applications and
the Ziegler}Nichols method is insu$cient in such ap-
plications. Recently, many techniques have been reported
to improve PID tuning. Among them are the re"ned
Ziegler}Nichols method (Hang, Astrom & Ho, 1991); the
gain-phase margin method (Astrom & Hagglund, 1988;
Ho, Hang & Cao, 1995a; Ho, Hang & Zhou, 1995b); the
optimization of cost function method (Shinskey, 1988;
Zhuang & Atherton, 1993), IMC-based PID controller
design (Morari & Za"riou, 1989) and tuning of open-
loop unstable processes (Rotstein & Lewin, 1991). The
model-based tuning methods are very encouraging
(Huang, Chen, Lai & Wang, 1996; Morari & Za"riou,
1989).
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Linear Quadratic Regulator (LQR) design technique is
well known in modern optimal control theory and has
been widely used in many applications (Lewis & Syrmos,
1995). It has a very nice robustness property, i.e., if the
process is of single-input and single-output, then the
control system has at least the phase margin of 603 and
the gain margin of in"nity. This attractive property ap-
peals to the practicing engineers. Thus, the LQR theory
has received considerable attention since 1950s. In the
context of optimal PID tuning, typical performance indi-
ces are the integral of squared error and time weighted
error. With this kind of performance criterions, the inte-
gral of squared error (squared time weighted error) is
calculated using `Astrom's integral algorithma recursive-
ly if the process transfer function is known (Zhuang
& Atherton, 1993). The Pade approximation is used to
replace the time delay and then obtain the optimal PID
controller for a "rst-order plus time-delay process. It is
however noted that the Pade approximation may be
inadequate for large normalized time delay. It is also
noticed that an analytical tuning formula cannot be
obtained via this optimization. The computational pro-
cedure to minimize the performance criterion is complic-
ated and thus unsuitable for on-line applications.

In this paper, the LQR approach is employed to
develop an optimal PI/PID controller tuning algorithm
for the low-order plus time-delay model. A new criterion
for selection of the Q and R matrices is proposed which
will lead to the desired natural frequency and damping
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ratio of the closed-loop system. The examples with vari-
ous dynamics are included to demonstrate the e!ec-
tiveness of the tuning algorithms and show signi"cant
improvement over some existing best PID tuning
methods. Finally, the robustness property of the tuning
algorithms is analyzed, and it is shown that the LQR
system is robustly stable for the small modeling error.

The paper is organized as follows. In Section 2, the
LQR solution for a linear process with time delay is
presented. An optimal PI tuning algorithm for a "rst-
order plus time-delay model is derived via the LQR
approach in Section 3. Various simulations are given in
Section 4. Section 5 proposes the optimal PID tuning
algorithm. Section 6 considers the robustness issue of the
PI tuning algorithm. Section 7 concludes the paper.

2. LQR solution for time-delay systems

Consider a linear process with time delay described by

x5 (t)"Ax(t)#Bu(t!¸) (1)

and the control performance speci"cation measured in
terms of

J"P
=

0

(xT(t)Qx(t)#uT(t)Ru(t)) dt, (2)

where A, B, C, Q and R are given matrices with proper
dimensions, Q*0 and R'0, u(t)"0, when t(0. The
LQR problem is to "nd the optimal control u(t) such that
J in Eq. (2) is minimized. We decompose the dynamic
process (1) into two stages: (I) when 0)t(¸, u(t!¸)"0,
there is no input signal to process (1) so that

x5 (t)"Ax(t), 0)t(¸, (3)

(II) when t*¸, the process has a possible non-zero input
signal. In this stage, let u( (t)"u(t!¸), t*¸, we have

x5 (t)"Ax(t)#Bu( (t), t*¸. (4)

Through this transformation, Eqs. (3) and (4) are now
both delay free and the LQR result for delay-free process
can then be applied. It is well known (Lewis & Syrmos,
1995) that the LQR solution to process (4) is

u( (t)"!R~1BTPx(t), t*¸, (5)

where P is the positive de"nite solution of the Riccati
equation:

ATP#PA!PBR~1BTP#Q"0. (6)

Converting u( (t) in Eq. (5) back to u(t), we obtain the LQR
solution to the original process (1) with the index (2) as

u(t)"u( (t#¸)"!R~1BTPx(t#¸), t*0. (7)

One sees from Eq. (7) that though the control law u( (t)
given in Eq. (5) is in time horizon of t*¸, the recovered

u(t) actually gives the control signal for process (1) in the
whole time horizon of t*0. x(t#¸) is not directly
available at time t. By Eqs. (3)}(5), however, it can be
expressed by the transmission of x(t) as

x(t#¸)"e(A~BR
~1

B
T
P)tx(¸)"e(A~BR

~1
B

T
P)teA(L~t)x(t), (8)

when 0)t(¸ and

x(t#¸)"e(A~BR
~1

B
T
P)tx(¸)"e(A~BR

~1
B

T
P)Lx(t), (9)

when t*¸. If we factorize the matrix Q as Q"HTH, the
LQR solution to Eqs. (1) and (2) can thus be summarized
(Marchall, 1979) in the following theorem.

Theorem 1. For the linear process (1) with time delay, if
(A, B) is controllable and (H, A) is observable, then the
optimal control minimizing the criterion function (2) is
given by

u(t)"!R~1BTPe(A~BR
~1

B
T
P)teA(L~t)x(t), 0)t(¸ (10)

and

u(t)"!R~1BTPe(A~BR
~1

B
T
P)Lx(t), t*¸, (11)

where P is the positive dexnite solution to Eq. (6). The
resultant system is also stable.

One may see from Eq. (7) that the current control u(t) is
actually a feedback of the future state at time of (t#¸). It
implies that the controller has the prediction capability
and thus may improve the closed-loop performance com-
pared with traditional LQR or PID design. It is also
noticed that during the starting period of time t(¸, the
control law (10) is time varying and generates a relatively
large gain required to speed up the response. When
t"¸, Eq. (10) coincides with Eq. (11) and thus the
control law is continuous. After that the feedback gain
becomes constant, as seen in Eq. (11).

The major criticisms on LQR design, especially from
the process control community, are that all the state
variables are usually not measurable and the selection of
the weighting matrices Q and R is not clear in order to
meet the closed-loop performance speci"cations, say,
overshoot and setting time. The goal of this paper is to
develop an optimal PI/PID tuning algorithm via the
above-outlined LQR solution for most typical industrial
processes such that these problems can be solved and
LQR design becomes truly useful for practical applica-
tions in process control.

3. PI tuning for 5rst-order modeling

In process industry, a large class of processes has mono-
tonic input}output transients whose transfer functions
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Fig. 1. Feedback control system.

can be approximated (Luyben, 1990) by a "rst-order plus
time-delay (FOPTD) one:

G(s)"
b

s#a
e~Ls. (12)

It should be noted that Eq. (12) is not the process
itself but a model of it and is used only for the purpose
of controller design. The controller, once designed,
should be applied to the process but not the model. A PI
controller

u(t)"K
pAe(t)#

1

¹
i
Pe(t) dtB"K

p
e(t)#K

iPe(t) dt (13)

is adequate for such a kind of processes (Astrom &
Hagglund, 1988). In this section, we will derive an opti-
mal PI tuning algorithm via the LQR approach of the
last section and the closed formulas for selecting Q and
R in terms of the closed-loop speci"cations.

Consider a unity output feedback system shown in
Fig. 1. In the case of feedback design, the external set-
point does not a!ect the result and we put r"0. It then
follows from Fig. 1 that (s#a)e"!be~Lsu, which is
equivalent to the time-domain equation

e5 "!ae!bu(t!¸). (14a)

We have the identity

d

dtP
t

0

e(t) dt"e. (14b)

Let x
1
":t

0
e(t) dt and x

2
"e such that x"[x

1
x
2
]T.

Then Eq. (14a) and (14b) can be written in the following
equivalent form:

x5 "C
0 1

0 !aDx#C
0

!bDu(t!¸). (15)

It should be emphasized that both the variables are
available (see Fig. 1) and the state feedback of Kx is
simply (K

i
:t
0
e dt#K

p
e), i.e., PI control. As a result, the

state feedback gain to be derived by LQR will give us the
required PI parameters.

In order to "nd the explicit expressions for K
i

and
K

p
for ease of use, comparing Eq. (15) with Eq. (1) yields

A"[ 0
0

1
~a

] and B"[ 0
~b

]. Let Q"[ q1
0

0
q2

]. Substituting
P"[ p11

p12
p12
p22

] into Riccati equation (6) yields

C
0 0

1 !aD C
p
11

p
12

p
12

p
22
D#C

p
11

p
12

p
12

p
22
D C

0 1

0 !aD
!C

p
11

p
12

p
12

p
22
D C

0

!bDR~1[0 !b]C
p
11

p
12

p
12

p
22
D

#C
q
1

0

0 q
2
D"0. (16)

Its positive de"nite analytical solution is

p
12

"Jq
1
R/b,

p
22

"(!Ra#JR2a2#Rb2(2p
12

#q
2
))/b2,

p
11

"ap
12

#R~1b2p
12

p
22

. (17)

Let

F"R~1BTP"R~1[0 !b]C
p
11

p
12

p
12

p
22
D

"!R~1b[ p
12

p
22

] (18)

and

A
c
"A!BF"C

0 1

0 !aD#C
0

!bDR~1b[p
12

p
22

]

"C
0 1

!R~1b2p
12

!Ja2#R~1b2(2p
12

#q
2
)D.

(19)

The optimal controller in Eq. (10) and (11) then reduces
to

u(t)"G
!FeActeA(L~t)x(t), 0)t(¸,

!FeAcLx(t), t*¸.
(20)

Remark 1. Note that given the process's A and B the
optimal controller in Eq. (20) depends only on the gain
F in Eq. (18), or only on p

12
and p

22
in the solution (17)

of Riccati equation. Now, if the matrix Q in Eq. (16) is
replaced by a general form of Q"[ q1

q12
q12
q2

], then its

positive de"nite analytical solution is p
12

"(1/b)Jq
1
R,

p
22
"[!Ra#JR2a2#Rb2(2p

12
#q

2
)]/b2 and p

11
"

ap
12

#R~1b2p
12

p
22

!q
12

. Note that p
12

and p
22

re-
main the same as those in Eq. (17) though the Q matrix is
non-diagonal. This shows that choosing Q with a diag-
onal form will not lose the generality in the PI optimal
controller design via the LQR approach for the case in
Fig. 1.

To obtain the feedback gains in Eq. (20) explicitly, one
needs to calculate exp(A

c
t) and exp(A(¸!t)). It follows
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from the Laplace inverse transformation that

exp(A(¸!t))"l~1(sI!A)~1D
(L~t)

"C
1 (1!exp(!a(¸!t)))/a

0 exp(!a(¸!t)) D. (21)

As for exp(A
c
t), let a(

2
"R~1b2p

12
, a(

1
"

Ja2#R~1b2(2p
12

#q
2
), a

1
and a

2
be the roots

of the equation s2#a(
1
s#a(

2
"0, i.e. a

1
"(!a(

1
#

Ja( 2
1
!4a(

2
)/2 and a

2
"(!a(

1
!Ja( 2

1
!4a(

2
)/2. Then

we have

exp(A
c
t)"l~1(sI!A

c
)~1"C

f
11

(t) f
12

(t)

f
21

(t) f
22

(t)D, (22)

where

f
11

(t)"
1

a
1
!a

2

[(a
1
#a(

1
)ea1 t!(a

2
#a(

1
)ea2 t],

f
12

(t)"
1

a
1
!a

2

[ea1 t!ea2 t],

f
21

(t)"
!a(

2
a
1
!a

2

[ea1 t!ea2 t] and

f
22

(t)"
1

a
1
!a

2

[a
1
ea1 t!a

2
ea2 t].

Recall that u"Kx"[K
i
, K

p
][:t

0
e dt, e]T. Substituting

Eqs. (18), (19), (21) and (22) into Eq. (20) gives us the
explicit expressions for the PI parameters.

Theorem 2. The LQR optimal control for process (12) with
state equation (15) is given in the form of a PI controller
(13), where for 0)t(¸,

K
i
(t)"R~1b[ p

12
f
11

(t)#p
22

f
21

(t)], (23a)

K
p
(t)"R~1bG

1

a
p
12

f
11

(t)#
1

a
p
22

f
21

(t)

#Cp12 f
12

(t)!
1

a
p
12

f
11

(t)#p
22

f
22

(t)

!

1

a
p
22

f
21

(t)De~a(L~t)H (23b)

and for t*¸,

K
i
(t)"R~1b[p

12
f
11

(¸)#p
22

f
21

(¸)], (24a)

K
p
(t)"R~1b[p

12
f
12

(¸)#p
22

f
22

(¸)], (24b)

where constants p
12

and p
22

are given in Eq. (17), f
ij
(t),

i"1, 2; j"1, 2, are given in Eq. (22), q
1
, q

2
and R are

tuning parameters.

In an ordinary LQR design, the selection of Q and
R matrix is quite technical and a!ects the system perfor-
mance a lot. In order to overcome this di$culty, we now
derive an direct relationship between q

1
and q

2
, and the

damping ratio m and natural frequency u
n

of the closed-
loop system.

Theorem 3. When t*¸, the damping ratio m and natural
frequency u

n
of the LQR optimal closed-loop system in

Eqs. (13) and (15) is

u
n
"JR~1bJq

1
R,

m"
Ja2#R~1b(2Jq

1
R#q

2
b)

2JR~1bJq
1
R

(25)

or equivalently, in order to have the desired m and u
n
,

q
1

and q
2

should be chosen as

q
1
"

u4
n
R

b2
,

q
2
"

[(4m2!2)u2
n
!a2]R

b2
. (26)

Proof. When t*¸, the closed-loop system becomes

x5 "A
c
x"

C
0 1

!R~1bJq
1
r !Ja2#R~1b(2Jq

1
r#q

2
b)D,

whose characteristic equation is

D"s(s#Ja2#R~1b(2Jq
1
r#q

2
b))#R~1bJq

1
R.

It thus has

u2
n
"R~1bJq

1
R,

2mu
n
"Ja2#R~1b(2Jq

1
R#q

2
b).

The theorem is then obvious. h

Remark 2. For the system (15) with Q"diagMq
1
, q

2
N

with q
1

and q
2

chosen according to Eq. (26), the perfor-
mance index (2) becomes

J"RCP
=

0

[
u4

n
b2 AP

t

0

e(t) dtB
2
#

(4m2!2)u2
n
!a2

b2
e(t)2

#u(t)2] dtD,
i.e., J is proportional to R. This implies that R makes no
sense in the design of controller gain F in Eq. (18) and
thus we can always choose R"1 when Theorem 3 is
applied.
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In view of the above development, an optimal PI
tuning algorithm for process (12) can be summarized as
follows for ease of reference.

An optimal PI tuning algorithm
Initialization: Obtain a, b, ¸ and set R"1.
Step 1. Choose the closed-loop u

n
and m.

Step 2. Calculate q
1

and q
2

from (26).
Step 3. Calculate p

12
and p

22
from (17), A

c
from (19)

and exp(A
c
t) from (22).

Step 4. Calculate the PI parameters from (23) and (24).

Remark 3. In the proposed algorithm, m and u
n

are only
user-speci"ed parameters. To our experience, choosing
m3[0.7, 1.0] and u

n
¸3[1.0, 1.5] would give a satisfac-

tory result. Normally, we can use defaults m"0.71 and
u

n
¸"1.3. For a better performance, a "ner tuning pro-

cedure may be employed.

4. Simulation studies

The PI tuning algorithm proposed in the last section
will be demonstrated for di!erent processes and shown
with thicker solid lines in the simulations (Figs. 2}5)
below. For comparison, the PI controller tuning by Ho's
gain-phase margin method (GPM) (Ho et al., 1995a) and
Luyben's hybrid approach (Luyben, 1998) are employed.
Ho et al. (1995b) compares various well-known PI tuning
algorithms and shows that the GPM method has a better
performance over most of the other PI tuning ones. Thus,
it represents one of the best available PI tuning methods
in the literature. Default gain margin of 3 and phase
margin of 453, as suggested by Ho, are chosen for Ho's
algorithm throughout the simulation examples and the
corresponding closed-loop responses are shown by thin
solid lines. The simulation with the Luyben's method is
also presented since it is one of the latest development in
the domain and its performance is plotted with dashed
lines. To tune a PI controller, the above three methods
have to be supplied with a model. A model for the process
may be obtained by process-model matching at two
frequencies (Luyben, 1990) or by least-squares "tting
between process and model frequency responses (Wang,
Hang & Bi, 1997). The latter is used for our simulations.
For a fair comparison, the same processes with the same
identi"ed models will be used in the simulations. Re-
sponses to a setpoint change of r"1 and a disturbance
of d"0.2 are shown.

Example 1. Consider a high vacuum distillation column.
The transfer function between the viscosity and the re#ux
#ow is given by

G
p
(s)"

0.57

(1#8.60s)2
e~18.70s

and the model is identi"ed as

G(s)"
0.57

1#12.72s
e~23.2s.

With u
n
¸"1.3 and m"0.71, the PI controller's para-

meters are obtained as

K
i
(t)"[0.0701 cos(0.0395t)#0.0690 sin(0.0395t)]e~0.0398t,

K
p
(t)"[0.1417 sin(0.0395t)!0.1404 cos(0.0395t)]e0.0388t

#[0.8913 cos(0.0395t)#0.8771 sin(0.0395t)]e~0.0398t

for 0)t(23.2, and K
i
"0.0387, K

p
"0.5581 for

t*23.2. The control signal and the closed-loop perfor-
mance are shown in Fig. 2A. The results show that the
LQR method gives a perfect response and signi"cantly
outperforms that of the other two methods.

To see what causes di!erent shapes of response, PI
parameters for three tuning approaches are shown in
Fig. 2B. The hybrid one has very big K

p
and very small

K
i
, leading to the response with a short rise time but long

settling time and signi"cant undershoot and oscillations.
The GPM gives rise to a smaller K

p
and bigger K

i
rela-

tively to other two methods, causing the response with
a long rise time and obvious overshoot. On the other
hand, the proposed LQR method correctly produces
quite big controller gains (both K

p
and K

i
) at the initial

stage, which are necessary to speed up the response, and
afterwards it quickly reduces the gains to a reasonable
level to avoid overshoot and have a short settling time.
The variable gains thus make a perfect response, which
other methods could never achieve. To further convince
the necessity of using the time-varying PID and impossi-
bility of any "xed parameter PID for a perfect response,
in addition to GPM tuning with defaults values, we
re-tune PID using the GPM with other margins to have
a similar rise time (curve 1) and a similar overshoot/
undershoot (curve 3) to our method, respectively. The
three cases as well as our tuning case are all shown in
Fig. 2C and the corresponding gains in Fig. 2D. It is
absolutely clear that the tuning of a "xed PID faces
unavoidable trade-o! between rise time and settling
time/overshoot. Thus a "xed PID cannot achieve all the
best properties simultaneously, and time-varying PID is
necessary for such a purpose and is actually possible as
proven by the proposed method, where time varying part
of the gains enables a fast response without causing
overshoot.

Example 2. Consider the high-order process

G
p
(s)"

1

(s#1)n
,
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Fig. 2. (A) Closed-loop Performance for [0.57/(1#8.60s)2]e~18.70s. (B) PI parameters for plant [0.57/(1#8.60s)2]e~18.70s. (C) Compare with "xed PI
tuning approach (GPM method). (D) PI parameters for di!erent GPM tuning.
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Fig. 2. Continued.

with n"10 and 20, respectively. The resultant models
are

1

1#2.72s
e~7.69s, n"10,

1

1#4.95s
e~15.67s, n"20.

The closed-loop responses in Fig. 3 show that the pro-
posed method has a much better performance than that
of the Ho's method.

Example 3. The algorithm is also applied to the non-
minimum-phase process

G
p
(s)"

1!as

(1#s)3
,
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Fig. 3. (A) Closed-loop Performance for 1/(s#1)n with n"10. (B) Closed-loop Performance for 1/(s#1)n with n"20.

with a"1 and a"1.5. The closed-loop performance
shown in Fig. 4 exhibits a great improvement with the
proposed method.

The simulations from the above examples show that
the proposed LQR-based PI tuning algorithm gives
a much better closed-loop performance over some well-
known PI tuning methods. One also sees that the control
signal given by the LQR method is larger than that of
GPM method when t(¸, and it leads to a faster setpoint
response. But thereafter the gains decrease and the overall
control signal amplitude is not larger than that for ordinary
PI tuning. For these three examples, the actual processes,
their models, output performance speci"cations and PI
parameters are listed in Table 1 for ease of reference.

5. Extension to second-order modeling

PI control is sometimes inadequate when the process
dynamics is not essentially "rst order (Astrom & Hag-

glund, 1988). In this section, the PID tuning formula will
be derived for the second-order plus time-delay model
instead of the "rst-order plus time-delay model. Consider
a second-order process model given by

G(s)"
b

(s#a)(s#a
1
)
e~Ls, a

1
*a. (27)

A PID controller is written in the from of

G
c
(s)"AKp

#K
i

1

sB(s#K
d
) (28)

Then, from Eqs. (27) and (28), the open-loop transfer
function is

G
c
(s)G(s)"AKp

#K
i

1

sB
b(K

d
#s)

(s#a)(s#a
1
)
e~Ls. (29)

For ease of control design, one may choose, like Ho et al.
(1995b), K

d
"a

1
to cancel the larger process pole.
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Fig. 4. (A) Closed-loop Performance for (1!as)/(1#s)3 with a"1. (B) Closed-loop Performance for (1!as)/(1#s)3 with a"1.5.

Eq. (29) is then reduced to

G
c
(s)G(s)"AKp

#K
i

1

sB
b

(s#a)
e~Ls. (30)

Note that Eq. (30) now gives the same open-loop transfer
function as with the FOPTD model G(s) given in Eq. (12)
and a PI controller in Eq. (13). Therefore, a PID control-
ler can be simply tuned with K

d
"a

1
and the PI para-

meters given as in the last section.
Similarly to the FOPTD model, a second-order plus

time-delay model in Eq. (27) can be identi"ed by various
identi"cation methods (Luyben, 1990). In Example 4, the
least-squares "tting method is employed to identify the
model and then the proposed PID tuning method is
applied. Ho's tuning formula for PID (Ho et al., 1995b) is
adopted again for comparison.

Example 4. Consider a non-minimum phase process

G
p
(s)"

1!s

(1#s)2(2#s)

and its model is obtained as

G(s)"
e~1.64s

(s#1)(s#2)
.

Choose u
n
¸"1.3 and m"0.8, the PID parameters are

obtained as K
p
"0.6138, K

i
"0.5561 and K

d
"1 for

t*1.64. The simulation result in Fig. 5 shows a great
improvement of our method over Hos (Ho et al., 1995b)
which has a gain margin of 3 and phase margin of 453.

6. Robustness analysis

One of the most attractive properties of LQR design
for delay-free processes is the robustness of its closed-
loop system, which is usually wanted in practical applica-
tions. If the process is of single-input and single-output,
the resultant LQR system has at least the phase margin
of 603 and gain margin of in"nity. Unfortunately, it is
found that this property cannot be carried over to the
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Table 1
PI tuning and performance

Process Model Method u
n
¸(A

m
) m(U

m
) K

p
/K

p
(R) K

i
/K

i
(R) Rise time Settling time Overshoot/

undershoot

0.57e~18.70s

(1#8.60s)2

0.57

1#12.72s
e~23.2s

LQR 1.3 0.71 0.5581 0.0387 44.7 76 0.0/0.0
GPM 3 45 0.4719 0.0408 39.5 129 0.09/0.009
Hybrid ] ] 1.2464 0.0362 25 132 0.0/0.2

1

(1#s)10

1

1#2.72s
e~7.69s

LQR 1.4 0.71 0.2487 0.0701 13.3 23.5 0.002/0.0
GPM 3 45 0.1735 0.0680 13.9 36.7 0.054/0.002
Hybrid ] ] 0.0472 0.0658 10.3 40 0.0/0.125

1

(1#s)20

1

1#4.95s
e~15.67s

LQR 1.4 0.71 0.2335 0.0349 22.6 22 0.01/0.0
GPM 3 45 0.1550 0.0331 26 48 0.049/0.0
Hybrid ] ] 0.4523 0.0327 19 79 0.0/0.135

1!s

(1#s)3

1

1#1.61s
e~2.25s

LQR 1.2 0.71 0.3806 0.2240 2.5 5 0.03/0.03
GPM 3 45 0.3511 0.2468 3.0 12.6 0.21/0.028
Hybrid ] ] 0.8758 0.2054 1.8 12.3 0.175/0.2

1!1.5s

(1#s)3

1

1#1.01s
e~2.89s

LQR 1.5 0.71 0.2574 0.1850 3.4 6.9 0.045/0.024
GPM 3 45 0.1715 0.1807 4.3 17 0.158/0.02
Hybrid ] ] 0.4922 0.1754 2.7 8 0.058/0.075

Fig. 5. Closed-loop Performance for (1!s)/(1#s)2(2#s).

time-delay case in general. Its extension is only possible
for special systems.

Let us consider the stability of the controlled system in
Eqs. (1) and (11) with the real parameters perturbed to A

r
,

B
r
and ¸

r
. Without the loss of generality, the robustness

issue is considered when t*maxM¸, ¸
r
N, because during

a "nite time interval, the system cannot go to in"nity. If
the control law of Eq. (11) is applied to the process (1), the
resultant closed loop is

x5
r
"A

r
x
r
!B

r
R~1BTP exp(A

c
¸)x

r
(t!¸

r
), (31)

where A
c
"A!BR~1BTP. Let matrix AK

c
be the solu-

tion of equation

AK
c
"A

r
!B

r
R~1BTP exp(A

c
¸)exp(!AK

c
¸

r
), (32)

then we have the following theorem.

Theorem 4. The perturbed system with real process para-
meters A

r
, B

r
and ¸

r
remains stable if all eigenvalues of

AK
c

given by Eq. (32) lie in the open left half of the complex
plane.

Proof. Substituting Eq. (32) into Eq. (31) yields

x5
r
(t)"[AK

c
#B

r
R~1BTP exp(A

c
¸)exp(!AK

c
¸
r
)]x

r
(t)

!B
r
R~1BTP exp(A

c
¸)x

r
(t!¸

r
). (33)

Consider the dynamic equation

x5 (t)"AK
c
x(t). (34)

Its state transition satis"es

x(t!¸
r
)"exp(!AK

c
¸
r
)x(t).

Observe that the two di!erential equations (33) and (34)
coincide. Thus Eq. (33) is stable if Eq. (34) is stable, i.e. all
the eigenvalues of AK

c
given by Eq. (34) lie in the open left

half of the complex plane. The proof is completed. h

Now, we consider Eq. (32) in the special case of the PI
controller (13) for process (12) with real parameters
A

r
"[ 0

0
1
~ar

], B
r
"[ 0

~br
] and ¸

r
. Let

exp(A
c
¸)exp(!AK

c
¸
r
)"I#D"C

1#D
11

D
12

D
21

1#D
22
D.
(35)

Note that in the case of no modeling error in process (12),
i.e. A

r
"A, B

r
"B and ¸"¸

r
, AK

c
"A

c
will be the

solution of Eq. (32), or exp(A
c
¸)exp(!AK

c
¸

r
)"I and
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AK
c
"C

0 1

0 !a
r
D!C

0

R~1b
r
bD[p12 p

22
](I#D)

"C
0 1

!R~1b
r
bp

12
!R~1b

r
b(p

12
D
11

#p
22

D
21

) !a
r
!R~1b

r
b(p

22
#p

12
D
12

#p
22

D
22

)D.

D
ij
"0, i, j"1, 2. In general, however, the solution of

Eq. (32) is continuous with respect to A
r
, B

r
and ¸

r
. In

other words, for any e'0, there exists a d'0 such that
if DDA

r
!ADD(d, DDB

r
!BDD(d and D¸

r
!¸D(d, then

DD
ij
D(e, i, j"1, 2. The following proposition further

shows that when the process perturbation is small
enough, the control system will remain stable.

Proposition 1. If the process parameter perturbations are
small enough, the control system in Eqs. (12) and (13) is
robustly stable.

Proof. Substituting A
r
, B

r
, ¸

r
and Eq. (35) into Eq. (32)

gives

The eigenvalues of AK
c

lie in the open left half of the
complex plane if

!R~1b
r
bp

12
!R~1b

r
b(p

12
D
11

#p
22

D
21

)(0,

!a
r
!R~1b

r
b(p

22
#p

12
D
12

#p
22

D
22

)(0

or

D
11

#

p
22

p
12

D
21

'!1,

D
22

#

p
12

p
22

D
12

*!1. (36)

Note from Eq. (21) that p
12

and p
22

are positive real
numbers, and Eq. (36) will hold true if we choose an
e such that e(minM0.5, p

12
/2p

22
, p

22
/2p

12
N. Thus, for

such an o and DD
ij
D(e, i, j"1, 2, there exists a corre-

sponding d'0 such that if the parameter perturbations
in the process satisfy DDA

r
!ADD(d, DDB

r
!BDD(d and

D¸
r
!¸D(d, the resultant closed-loop system remains

stable. The proposition is proved. h

7. Conclusions

Time delay is a very common phenomenon in process
industry. In this paper, an LQR solution has been used to
develop an optimal tuning algorithm for processes with

time delay. The algorithm can produce optimal PID
settings and generate the expected closed-loop perfor-
mance from the user's speci"cations on damping ratio
and natural frequency. It has been seen from examples of
various dynamics given here that the proposed tuning
signi"cantly outperforms some of the best existing
method. This is largely due to the prediction capability of
our LQR controller and the established relationship be-
tween the weightings and closed-loop performance.
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